首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe+2 was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe+2 and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe+2, such as FeS, FeCl2 and FeCO3, and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe+2 was the formation of Prussian Blue, Fe4[Fe(CN)6]3, which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.  相似文献   

2.
α-N-Carbamoyl amino acid (CAA), whose conditions of formation in a prebiotic hydrosphere have been described previously (Taillades et al. 1998), could have been an important intermediate in prebiotic peptide synthesis through reaction with atmospheric NO x . Nitrosation of solid CAA (glycine or valine derivative) by a 4/1 NO/O2 gaseous mixture (1 atm) yields N-carboxyanhydride (NCA) quantitatively in less than 1 h at room temperature. The crude solid NCA undergoes quantitative oligomerization (from trimer to nonamer under the conditions we used) when treated with a (bi)carbonate aqueous buffer at pH 9. We therefore suggest that part of the prebiotic amino acid activation/polymerization process may have taken place in a dry phase (``drying-lagoon' scenario). Received: 23 June 1998 / Accepted: 7 December 1998  相似文献   

3.
The soil of the former lake Texcoco is an extreme environment localized in the valley of Mexico City, Mexico. It is highly saline and alkaline, where Na+, Cl, HCO3 and CO32− are the predominant ions, with a pH ranging from 9.8 to 11.7 and electrolytic conductivities in saturation extracts from 22 to 150 dS m−1. Metagenomic DNA from the archaeal community was extracted directly from soil and used as template to amplify 16S ribosomal gene by PCR. PCR products were used to construct gene libraries. The ribosomal library showed that the archaeal diversity included Natronococcus sp., Natronolimnobius sp., Natronobacterium sp., Natrinema sp., Natronomonas sp., Halovivax sp., “Halalkalicoccus jeotgali” and novel clades within the family of Halobacteriaceae. Four clones could not be classified. It was found that the archaeal diversity in an alkaline-saline soil of the former lake Texcoco, Mexico, was low, but showed yet uncharacterized and unclassified species. César Valenzuela-Encinas and Isabel Neria-González contributed equally to this publication.  相似文献   

4.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

5.
We report the synthesis of purine bases and other heterocycles and the formation of amino acids, hydroxy acids and dihydroxy compounds by the spark activation of an atmosphere of methane, nitrogen and hydrogen, in the presence of an aqueous aerosol. With the aid of the interface air–water, the organic material obtained shows greater amounts and diversity of molecules with biological interest than the products obtained in the absence of an aerosol. Our results support the suggestion that aerosols may have played a significant role in the prebiotic origin of molecular diversity and evolution.  相似文献   

6.
Phosphate (P i) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P i sorption whereas mild alkaline media – as well as those simulating sulfur oxidation to SO2− 4 – revert this capture process. Several mechanisms relevant to P i availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg2+ bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO2− 4 trapping by the mineral interface would provoke the release of sorbed P i due to charge polarization. Moreover it is shown that P i self-modulates its sorption, a mechanism that depends on the abundance of SO2− 4 in the interface. The relevance of the proposed mechanisms of P i capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since – similarly to contemporary aqueous media – inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P i could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall. R B-L and Y C-S contributed equally to this work; recipients of fellowships from the Brazilian National Research Council in the PIBIC and PINC-School of Medicine programs of the Universidade Federal de Rio de Janeiro  相似文献   

7.
Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.  相似文献   

8.
In order to obtain the diversity and temporal–spatial distribution of Bacillus community during the swine manure composting, we utilized traditional culture methods and the modern molecular biology techniques of polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and –denaturing gradient gel electrophoresis (PCR-DGGE). Bacillus species were firstly isolated from the composting. Based on temperature changes, the temporal–spatial characteristics of total culturable Bacillus were remarkable that the number of the culturable Bacillus detected at the high-temperature stage was the highest in each layer of the pile and that detected in the middle layer was the lowest at each stage of composting respectively. The diversity of cultivated Bacillus species isolated from different composting stages was low. A total of 540 isolates were classified by the RFLP method and partial 16S rDNA sequences. They affiliated to eight species including Bacillus subtilis, Bacillus cereus, Bacillus thuringiensis, Bacillus anthracis, Bacillus megaterium, Bacillus licheniformis, Bacillus pumilus, and Bacillus circulans. The predominant species was B. subtilis, and the diversity of culturable Bacillus isolated in the middle-level samples at temperature rising and cooling stages was the highest. The DGGE profile and clone library analysis revealed that the temporal–spatial distribution of Bacillus community was not obvious, species belonging to the Bacillus were dominant (67%) with unculturable bacteria and B. cereus was the second major culturable Bacillus species. This study indicated that a combination of culture and culture-independent approaches could be very useful for monitoring the diversity and temporal–spatial distribution of Bacillus community during the composting process.  相似文献   

9.
In this study, a new α-glucosidase gene from Thermoanaerobacter ethanolicus JW200 was cloned and expressed in Escherichia coli by a novel heat-shock vector pHsh. The recombinant α-glucosidase exhibited its maximum hydrolytic activity at 70°C and pH 5.0∼5.5. With p-nitrophenyl-α-D-glucoside as a substrate and under the optimal condition (70°C, pH 5.5), K m and V max of the enzyme was 1.72 mM and 39 U/mg, respectively. The purified α-glucosidase could hydrolyze oligosaccharides with both α-1,4 and α-1,6 linkages. The enzyme also had strong transglycosylation activity when maltose was used as sugar donor. The transglucosylation products towards maltose are isomaltose, maltotriose, panose, isomaltotriose and tetrasaccharides. The enzyme could convert 400 g/L maltose to oligosaccharides with a conversion rate of 52%, and 83% of the oligosaccharides formed were prebiotic isomaltooligosaccharides (containing isomaltose, panose and isomaltotriose).  相似文献   

10.
Saline lakes at high altitudes represent an important and extreme microbial ecosystem, yet little is known about microbial diversity in such environments. The objective of this study was to examine the change of microbial diversity from the bottom of the lake to sediments of 40 cm in depth in a core from Qinghai Lake. The lake is saline (12.5 g/L salinity) and alkaline (pH 9.4) and is located on the Qinghai–Tibetan Plateau at an altitude of 3196 m above sea level. Pore water chemistry of the core revealed low concentrations of sulfate and iron (<1 mM), but high concentrations of acetate (40–70 mM) and dissolved organic carbon (1596–5443 mg/L). Total organic carbon and total nitrogen contents in the sediments were ∼2 and <0.5%, respectively. Acridine orange direct count data indicated that cell numbers decreased from 4 × 109 cells/g at the water–sediment interface to 6× 107 cells/g wet sediment at the 40-cm depth. This change in biomass was positively correlated with acetate concentration in pore water. Phospholipid fatty acid (PLFA) community structure analyses determined decrease in the proportion of the Proteobacteria and increase in the Firmicutes with increased depth. Characterization of small subunit (SSU) rRNA genes amplified from the sediments indicated a shift in the bacterial community with depth. Whereas the α-, β-, and γ-Proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) were dominant at the water–sediment interface, low G + C gram-positive bacteria (a subgroup of Firmicutes) became the predominant group in the anoxic sediments. Both PLFA and the sequence data showed similar trend. The Proteobacteria, CFB, and gram-positive bacteria are present in other saline lakes, but thepresence of Actinobacteria and Acidobacteria/Holophaga in significant proportions in the Qinghai Lake sediments appears to be unique. The archaeal diversity was much lower, and clone sequences could be grouped inthe Euryarchaeota and Crenarchaeota domains. The archaeal clones were not related to any known cultures but to sequences previously found in methane-rich sediments. Acetate-utilizing methanogens were isolated from sediment incubations, and α- and γ-proteobacterial isolates were obtained from a water sample from the lakebottom (23 m). Our data collectively showed that the observed diversity and shift in the community structure with depth was correlated with geochemical parameters (the redox state and availability of electron acceptor and donor). Heterotrophic methanogenesis is possibly adominant metabolic process in the Qinghai Lake sediments. These results reinforce the importance of geochemical controls on microbial ecology in saline and alkaline lake environments.  相似文献   

11.
Selective emergence and survival of early polypeptides in water   总被引:2,自引:0,他引:2  
Oligopeptides essential to primitive cells could not be obtained just by raising the background noise of organic compounds produced by a prebiotic chemistry working at random. Selection pathways were required. Experimental evidence is given for selective condensation of amino acids in water as well as for selective resistance to degradation. It is shown that N-carboxyanhydrides are good candidates for chemical selection in water. They are formed when active esters of amino acids are left in the presence of bicarbonate ions or when N,N'-carbonyldiimidazole is used as condensing agent. Polymerization of a mixture of proteinaceous and non-proteinaceous amino acids leads to an enrichment in the proteinaceous ones plusα-aminobutyric acid. Selective resistance toward degradation ofβ-pleated sheet conformation is used to exemplify a possible accumulation of homochiral sequences made of hydrophilic and strong hydrophobic residues. Amino acids with branched aliphatic side-chains are selected but those having short linear aliphatic side-chains such asα-aminobutyric acid or norvaline are not.  相似文献   

12.
In experiments on the prebiotic formation of nitric oxides, anoxic mixtures of N2 and water vapour were sparked in contact with phosphate buffer solutions at various pH values. Nitrite was found in the aqueous phase, and nitrate grew from it, presumably by reaction with H2O2. In acid solutions, these anions were reduced and destroyed by Fe2+, and the same was true of nitrite in solutions kept at a pH value similar to that of the contemporary ocean (8.2) with HEPES buffer. Nitrate was not destroyed in short-term experiments, but as in sparking nitrate is formed only via nitrite, neither anion could accumulate. In further sparking experiments with alkaline sulphide, both nitrite and nitrate were reduced entirely. It is concluded that it is unlikely that the primeval ocean contained appreciable concentrations of nitrite or nitrate either at the reducing or at the redox-neutral stage.  相似文献   

13.
Lisichkina  G. A.  Bab'eva  I. P.  Sorokin  D. Yu. 《Microbiology》2003,72(5):618-620
Using a solid nutrient medium containing alkaline buffer (pH 10) and an antibiotic, alkalitolerant yeasts were isolated from samples of soda-rich saline soils (solonchaks) of Armenia (Arazdayan) and the Transbaikal region (the Kungur Steppe). The species diversity of the yeast populations of the tested soda-rich soils was relatively insignificant. They only contained alkalitolerant representatives of asporogenic capsulated yeasts belonging to the species Cryptococcus laurentii, C. albidus, Rhodotorula glutinis, R. mucilaginosa,and Sporobolomyces roseus. C. laurentii representatives clearly dominated the isolates obtained, their number exceeding that of the other species by two to three orders of magnitude. All of the isolates grew on acidic wort agar, suggesting that they did not include obligate alkaliphiles.  相似文献   

14.
A first study was made on the microbial community composition of the Indonesian crater lake Kawah Ijen (pH < 0.3) and the Banyupahit–Banyuputih river (pH 0.4–3.5) originating from it. Culture-independent, rRNA gene-based denaturing gradient gel electrophoresis was used to profile microbial communities in this natural and ancient, extremely acidic environment. Similarity in community profiles of the different sampling locations was low, indicating heterogeneity in community composition. Archaea were present at all sampling locations; archaeal diversity was low at the most acidic locations and increased at pH >2.6. Bacteria were not detected in the water column of the crater lake, but were found at all locations along the acidic river. Bacterial diversity increased with increasing pH. Eukarya were only present at pH >2.6. Retrieved rRNA gene sequences of Bacteria and Archaea were not closely related to known acidophilic species. It is concluded that tolerance to extreme acidity in this system is developed most extensively among Archaea. The acidity gradient of the Banyupahit–Banyuputih river has a clear effect on microbial community composition and biodiversity.  相似文献   

15.
Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline–saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5–10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O2 gprotein−1 min−1, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day−1, productivity of 433.4 mgprotein l−1 day−1 and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline–alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline–saline conditions.  相似文献   

16.
The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6–4.7% salinity) geothermal waters where sinter growth varied between 10 and ~300 kg year−1 m−2, 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9–10), meteoric geothermal waters with temperature = 66–96°C and <1–20 kg year−1m−2 sinter growth, extensive biofilms (a total of 34 OTUs) were observed within the waters and these were dominated by members of the class Aquificae (mostly related to Thermocrinis), Deinococci (Thermus species) as well as Proteobacteria. The observed phylogenetic diversity (i.e., number and composition of detected OTUs) is argued to be related to the physico-chemical regime prevalent in the studied geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.  相似文献   

17.
Effects of changing the cytoplasmic pH on the cytoplasmic streaming, membrane potential and membrane excitability were studied in tonoplast-free cells ofChara australis andNitellopsis obtusa. The cytoplasmic pH was varied by internal perfusion of pH-buffered media.Nitellopsis cells were perfused only once, whileChara cells were perfused twice to control the pH more accurately. In both materials the rate of cytoplasmic streaming was maximum at about pH 7, low at pH 8.5–9 and almost zero at pH 5–5.5. The membrane potential was most negative at about pH 7. InChara the membrane potential supported by Mg·ATP was strongly inhibited at pH 5.5, and almost zero at pH 9, supporting the results obtained by Fujiiet al. (1979) on cells ofChara australis which were perfused once. The action potential could be induced by electrical stimulation inChara at pH 6.0–9.0 and inNitellopsis at pH 6.6–7.9. The membrane resistance ofNitellopsis was high at acidic and neutral pH values and low at alkaline pH, while that ofChara was low at both acidic and alkaline pH values.  相似文献   

18.
Alkaliphiles grow under alkaline conditions that might be disadvantageous for the transmembrane pH gradient (ΔpH, outside acidic). In this study, the behaviors of extruded protons by the respiration of obligate alkaliphilic Bacillus clarkii K24-1U were investigated by comparison with those of neutralophilic Bacillus subtilis IAM 1026. Although whole-cell suspensions of both Bacillus species consumed oxygen immediately after the addition of air, there were lag times before the suspensions were acidified. Under alkaline conditions, the lag time for B. clarkii significantly increased, whereas that for B. subtilis decreased. In the presence of valinomycin or ETH-157, which disrupts the membrane electrical potential (Δψ), the cell suspensions of both Bacillus species acidified immediately after the addition of air. Artificial electroneutral antiporters (nigericin and monensin) that eliminate the ΔpH exhibited no significant effect on the lag times of the two Bacillus species except that monensin increased the lag times of B. clarkii. The inhibition of ATPase and the Na+ channel also exhibited little effects on the lag times. The increased lag time for B. clarkii may represent the Δψ-dependent proton retention on the outer surface of the cytoplasmic membrane to generate a sufficient ΔpH under alkaline conditions.  相似文献   

19.
Salinization of freshwaters often co-occurs with other changes in the environment, including pH. We investigate the effect of pH on salinity tolerance in selected macroinvertebrates (Notalina fulva, Centroptilum sp. and Physa acuta—lethal effects only) and microinvertebrates (Paramecium caudatum and Hydra oligactis—lethal and sublethal effects). Despite seemingly plausible physiological arguments, no difference in salinity tolerance over 96-h period was detected between low (5 or 6 nominal) pH and circumneutral (7–8.2 nominal) pH. P. caudatum was more salt sensitive in pH 11 than in pH 5, 7, and 10 in terms of mortality, and in terms of a sublethal endpoint, number of individuals produced and survived over 72 h, more sensitive to salinity in pH 10 than in pH 5 and 7. No other effects of pH on salinity tolerance were detected. Acidification will likely have effects on freshwater organisms on its own, however, when combined with salinization (from saline waters approximating seawater) acidification level tested did not modify the direct effects of salinity on the sample of freshwater invertebrates tested from a range of taxonomic groups. Thus the risk of low (5 or 6) pH modifying the effect of salinity on freshwater invertebrates is not high. Logically, lower pH values might have modified the effect of salinity, but there is a limited scope for lower pH values that would keep the species studied alive. In contrast, alkaline pH may increase the effect of salinity in some freshwater invertebrates. It is possible that the effect of pH on salinity tolerance may, however, be increased in saline waters with low calcium concentrations.  相似文献   

20.
A number of novel alkaliphilic organotrophic bacteria have been isolated from several saline and alkaline East African soda lakes. The new isolates grow at pH values between 7.0 and 11.0, with pH optima for growth between 9.0 and 10.0. Growth occurs at total salts concentration between 0% and 20% (w/v) with optimum at 0%–7% (w/v). Phylogenetic analyses based on 16S rDNA sequence comparison indicate that these isolates are related (>96% similarity) to members of the Halomonadaceae within the γ-3 subdivision of the Proteobacteria. These analyses indicate that existing species within the Halomonadaceae fell within three main groups, one group comprising the type species of Halomonas, Halomonas elongata, and a number of other known species including one soda lake isolate. A second group constituting most of the remaining known species of Halomonas and related Chromohalobacter spp. includes 3 soda lake isolates with high DNA–DNA homologies. The third group included Halomonas halodenitrificans, Halomonas desiderata, Halomonas cupida, and 13 soda lake isolates. Phenotypic comparisons indicated that the majority of soda lake strains shared similar morphological, phenotypic, and chemotaxonomic properties to known strains of Halomonas but grew under alkaline conditions. The 3 soda lake isolates with high DNA–DNA homologies were, however, significantly different in antibiotic sensitivity pattern and in the utilization of several substrates, were unable to reduce nitrite, and showed low DNA–DNA homologies with known halomonads in the same group. We propose that these isolates comprise a new species of the genus Halomonas that we name Halomonas magadii sp. nov. The type strain is strain 21 MI (NCIMB 13595). Received: July 20, 1999 / Accepted: October 29, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号