首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

2.
The main purpose of this study was to investigate the effect of free radicals and experimental diabetes on cytosolic creatine kinase activity in rat heart, muscle and brain. Hydrogen peroxide decreased creatine kinase activity in a dose dependent manner which was reversed by catalase. Xanthine/xanthine oxidase, which produces superoxide anion, lowered the creatine kinase activity in the same manner whose effect was protected by superoxide dismutase. N-acetylcysteine and dithiothreitol also significantly ameliorated the effect of Xanthine/xanthine oxidase and hydrogen peroxide. Experimental diabetes of twenty-one days (induced by alloxan), also caused a similar decrease in the activity of creatine kinase. This led us to the conclusion that the decrease in creatine kinase activity during diabetes could be due to the production of reactive oxygen species. The free radical effect could be on the sulfhydryl groups of the enzyme at the active sites, since addition of sulfhydryl groups like N-acetylcysteine and dithiothreitol showed a significant reversal effect.  相似文献   

3.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

4.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

5.
Effects of oxygen radicals on substrate oxidation by cardiac myocytes   总被引:1,自引:0,他引:1  
Freshly isolated adult rat heart cells were used to study the effects of oxygen-free radicals on the myocardial oxidation of different substrates. The calcium-tolerant quiescent cells were incubated with xanthine plus xanthine oxidase as the source of free radicals. The oxidation of exogenous glucose, lactate and octanoate was severely inhibited (approx. 70%) by products of xanthine oxidase activity. Superoxide dismutase plus catalase effectively prevented the inhibition of oxidation. Cellular high energy phosphate levels were decreased in the presence of the oxygen free radical generating system although cell viability determined by Trypan blue exclusion and light microscopic assessment of normal morphology was not affected. These data suggest that oxygen free radicals decrease myocardial substrate oxidation which may contribute to the functional and ultrastructural changes in the myocardium under conditions such as reoxygenation after hypoxia and reperfusion after ischemia.  相似文献   

6.
This study was undertaken to examine the effects of oxygen free radicals on phosphatidylethanolamine (PE) N-methylation in rat heart sarcolemmal (SL) and sarcoplasmic reticular (SR) membranes. Three catalytic sites involved in the sequential methyl transfer reaction were studied by assaying the incorporation of radiolabeled methyl groups from S-adenosyl-L-methionine (0.055, 10, and 150 microM) into SL or SR PE molecules under optimal conditions. In the presence of xanthine + xanthine oxidase (superoxide anion radicals generating system), PE N-methylation was inhibited at site I and III in the heavy SL fraction isolated by the hypotonic shock-LiBr treatment method. In the light SL fraction isolated by sucrose-density gradient, a significant inhibition of PE N-methylation was seen at all three sites. These inhibitory effects of xanthine + xanthine oxidase on PE N-methylation were prevented by the addition of superoxide dismutase. Hydrogen peroxide showed a significant inhibition of PE N-methylation at site I in the heavy SL fraction, and at site I and II in the light SL fraction. Catalase blocked the inhibitory effects of hydrogen peroxide. The effects of both xanthine + xanthine oxidase and hydrogen peroxide on the SR membranes were similar to those seen for the heavy SL fraction. These results suggest that, in addition to lipid peroxidation, the oxygen free radicals may affect the function of cardiac membranes by decreasing the phospholipid N-methylation activity.  相似文献   

7.
Recent evidence suggests that free oxygen radicals are produced by ischaemic tissues, accounting for at least part of the damage that results. These free oxygen radicals are produced by xanthine oxidase, amongst others, and removed by scavenger enzymes (catalase, superoxide dismutase and glutathione peroxidase) and anti-oxidants. As mitochondria are oxygen-utilising organelles, they are capable of producing free oxygen radicals. Our results indicate that the removal of free oxygen radicals are not diminished during ischaemia, but the activity of the free oxygen radical generator, xanthine oxidase, is increased. This could lead to an increased superoxide anion concentration.  相似文献   

8.
The genetic toxicity of active oxygen species produced during the enzymic oxidation of xanthine has been investigated using Chinese hamster ovary (CHO) cells. Incubation of cells with xanthine plus xanthine oxidase resulted in extensive chromosome breakage and sister-chromatid exchange and gave a small increase in frequency of thioguanine-resistant cells (HGPRT test). Inclusion of superoxide dismutase or catalase in the xanthine/xanthine oxidase system inhibited chromosome breakage, whereas only catalase prevented SCE and mutant induction. It is concluded that hydrogen peroxide is responsible for most of the genetic effects observed in CHO cells exposed to xanthine/xanthine oxidase but that superoxide plays a key role in chromosome breakage.  相似文献   

9.
The effect of oxygen free radicals generated by xanthine-xanthine oxidase system and hydrogen peroxide were investigated on cardiac muscarinic cholinergic receptors. We have used highly enriched sarcolemmal preparations isolated from canine myocardium. Exposure of the sarcolemma to oxygen free radicals by xanthine-xanthine oxidase system resulted in a significant (P less than 0.05) decrease of Bmax of (3H)-QNB (4.66 +/- 0.51 to 2.68 +/- 0.22 pmoles/mg protein). Addition of superoxide dismutase (SOD) and catalase (10 micrograms/ml) resulted in a significant reversal of Bmax value to 3.72 +/- 0.39 pmoles per mg protein (p less than 0.05). However, the affinity constants of dissociation (KD) were not altered appreciably with the exposure to oxygen free radicals with or without scavengers. Hydrogen peroxide significantly depressed 3H-QNB binding to the receptors in a dose-dependent manner in a concentration range between 4.41 mM -441 mM. This depression was completely inhibited by 10 micrograms/ml catalase. The study demonstrates that the oxygen free radical species are capable of disrupting (3H)-QNB binding to the cardiac muscarinic receptors.  相似文献   

10.
The release of D-[3H]aspartate, [3H]noradrenaline, and of endogenous glutamate and aspartate from rat hippocampal slices was significantly increased when the slices were incubated with xanthine oxidase plus xanthine to produce superoxide and hydroxyl free radicals locally. Allopurinol, a specific xanthine oxidase inhibitor, the hydroxyl-radical scavenger D-mannitol, or the superoxide-radical scavenger system formed by superoxide dismutase plus catalase prevented this release. These results suggest that endogenous excitatory amino acids are released consequent to the formation of free radicals. The excess of glutamate and aspartate released by this mechanism could be one of the factors contributing to the death of neurons after anoxic or ischemic injuries.  相似文献   

11.
《Mutation Research Letters》1993,301(4):243-248
The effect of histidine on damage induced by oxygen radicals was studied in peripheral blood lymphocytes treated with free oxygen radical-inducing agents: hydrogen peroxide, xanthine oxidase plus hypoxanthine, bleumycin and γ-rays. l-Histidine, at a concentration of 1 mM, was found to potentiate both cell killing and inhibition of PHA-stimulated cell division brought about by hydrogen peroxide or xanthine oxidase plus hypoxanthine. In contrast, l-histidine did not affect γ-ray- or bleomycin-induced cell killing and inhibition of PHA-stimulated cell division. We suggest that l-histidine potentiation of cell damage is mainly mediated by interaction of the amino acid with hydrogen peroxide and/or iron rather than with other reactive oxygen species. In addition, these results also indicate that hydrogen peroxide produced by γ-radiation- or bleomycin-treated cells plays no role in the toxic effects elicited by these agents.  相似文献   

12.
Creatine kinase is a sulfhydryl containing enzyme that is particularly susceptible to oxidative inactivation. This enzyme is potentially vulnerable to inactivation under conditions when it would be used as a diagnostic marker of tissue damage such as during cardiac ischemia/reperfusion or other oxidative tissue injury. Oxidative stress in tissues can induce the release of iron from its storage proteins, making it an available catalyst for free radical reactions. Although creatine kinase inactivation in a heart reperfusion model has been documented, the mechanism has not been fully described, particularly with regard to the role of iron. We have investigated the inactivation of rabbit muscle creatine kinase by hydrogen peroxide and by xanthine oxidase generated superoxide or Adriamycin radicals in the presence of iron catalysts. As shown previously, creatine kinase was inactivated by hydrogen peroxide. Ferrous iron enhanced the inactivation. In addition, micromolar levels of iron and iron chelates that were reduced and recycled by superoxide or Adriamycin radicals were effective catalysts of creatine kinase inactivation. Of the physiological iron chelates studied, Fe(ATP) was an especially effective catalyst of inactivation by what appeared to be a site-localized reaction. Fe(ICRF-198), a non-physiological chelate of interest because of its putative role in alleviating Adriamycin-induced cardiotoxicity, also catalyzed the inactivation. Scavenger studies implicated hydroxyl radical as the oxidant involved in iron-dependent creatine kinase inactivation. Loss of protein thiols accompanied loss of creatine kinase activity. Reduced glutathione (GSH) provided marked protection from oxidative inactivation, suggesting that enzyme inactivation under physiological conditions would occur only after GSH depletion.  相似文献   

13.
Trace elements play an important role in oxygen metabolism and therefore in the formation of free radicals. Whereas iron and copper are usually the main enhancers of free radical formation, other trace elements, such as zinc and selenium, protect against the harmful effects of these radicals. To investigate the different protective mechanisms of zinc on radical formation, we examined the effects of added zinc and copper on superoxide dismutase activity. We also studied the effects of copper and iron on xanthine oxidase activity and on the Haber-Weiss cycle (iron, superoxide, and hydrogen peroxide), which generates hydroxyl radicals in vitro. The hypoxanthine/xanthine oxidase radical generating system contained a variety of different physiological ligands for binding the iron. This study confirmed the inhibitory effect of copper on xanthine oxidase activity. Moreover, it demonstrated that zinc inhibited hydroxyl radical formation when this formation was catalyzed by a citrate-iron complex in the hypoxanthine/xanthine oxidase reaction. Finally, human blood plasma inhibited citrate-iron-dependent hydroxyl radical formation under the same conditions. Although trace elements seemed responsible for this antioxidant activity of plasma, it is likely that zinc played no role as a plasma antioxidant. Indeed, calcium appeared to be responsible for most of this effect under our experimental conditions.  相似文献   

14.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

15.
The purpose of this study was to determine the radical species which mediates the toxic effects of exogenous oxygenderived free radicals on endothelial function of chronic diabetic rat aorta. Endothelium-dependent relaxation to acetylcholine was impaired in diabetic vessels. Exposure to the exogenous free radical generating system of xanthine plus xanthine oxidase selectively impaired endothelium-dependent relaxation to acetylcholine in control and diabetic aorta with relaxations essentially abolished in diabetic aorta. The loss of relaxation to acetylcholine in diabetic aorta was prevented or attenuated by pretreatment with catalase, dimethylthiourea or desferrioxamine, but not by mannitol or superoxide dismutase. These results suggest that hydroxyl radicals play an important role in the endothelial injury produced by oxygen-derived free radicals in chronic diabetic rat aorta. Furthermore, the site of the injury is likely due to intracellular generation of hydroxyl radicals.  相似文献   

16.
Exhaustive exercise generates free radicals. However, the source of this oxidative damage remains controversial. The aim of this paper was to study further the mechanism of exercise-induced production of free radicals. Testing the hypothesis that xanthine oxidase contributes to the production of free radicals during exercise, we found not only that exercise caused an increase in blood xanthine oxidase activity in rats but also that inhibiting xanthine oxidase with allopurinol prevented exercise-induced oxidation of glutathione in both rats and in humans. Furthermore, inhibiting xanthine oxidase prevented the increases in the plasma activity of cytosolic enzymes (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase) seen after exhaustive exercise. Our results provide evidence that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise. These findings also suggest that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.  相似文献   

17.
The mono-electronic reduction of oxygen in the hypoxanthine-xanthine oxidase system led to the formation of active species eliciting an evident and highly reproducible mutagenic response in strain TA104 of S. typhimurium. Similar effects were observed by generating oxy radicals either extracellularly or inside bacterial cells. Mutagenicity was selectively detected in TA104 and not in other Salmonella strains, which points out the importance of the hisG428 mutation and of the deletion excising the uvrB gene, as far as sensitivity to oxy radicals is concerned. The mutagenicity of the system was further enhanced in the presence of superoxide dismutase. Catalase did not affect the mutagenicity of hypoxanthine plus xanthine oxidase, whereas it inhibited the mutagenicity induced by the mixture of hypoxanthine with xanthine oxidase and superoxide dismutase. This demonstrates that not only hydrogen peroxide but also the superoxide radical anion is positive in this system. Glutathione and 2 synthetic thiols, i.e., N-acetylcysteine and alpha-mercaptopropionylglycine, besides decreasing the high spontaneous mutagenicity of TA104, efficiently prevented the mutagenicity of active oxygen species.  相似文献   

18.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Thiourea and superoxide dismutase were effective antidotes to paraquat toxicity in an HL60 cell culture system, whereas other hydroxyl scavengers were ineffective. The efficacy of thioureas was not due to blockage of intracellular paraquat uptake, inhibition of NADPH-P-450 reductase, or reaction with the paraquat radical. Thiourea also competitively inhibited the reduction of cytochrome c by the xanthine/xanthine oxidase superoxide-generating system, and the release of iron from ferritin by superoxide radicals. The reaction of superoxide with thiourea produced a sulfhydryl compound distinct from products formed by hydrogen peroxide or hydroxyl radicals. Spectrophotometric and chromatographic studies indicated the carbon-sulfide double bond was converted to a sulfhydryl group which reacted with Ellman's reagent. Additional confirmatory evidence for the sulfhydryl compound was obtained with carbon-13 NMR and mass spectroscopies. Thus, thioureas are direct scavengers of superoxide radicals as well as hydroxyl radicals and hydrogen peroxide. The rate constant for the reduction of thiourea by superoxide was estimated at 1.1 x 10(3) M-1 s-1. The implication of this finding on free radical studies, the mechanism of paraquat toxicity, and the metabolism of thioureas is discussed.  相似文献   

20.
Tyrosinase isolated from cultured human melanoma cells was studied for tyrosine oxygenation activity. l -Tyrosine and d -tyrosine were used as substrates and dopa was measured with HPLC and electrochemical detection as the product of oxygenation. Incubations were performed in the presence or absence of dopamine as co-substrate. Oxygenation of l -tyrosine occurred only in the presence of dopamine as co-substrate. No oxygenation of d -tyrosine was found, and we conclude that human tyrosinase is characterised by exclusive specificity for the l -isomer of tyrosine in its oxygenase function. It has recently been suggested that superoxide anion is a preferential oxygen substrate for human tyrosinase. Incubations were therefore performed with l - and d -tyrosine, human tyrosinase, and xanthine/xanthine oxidase in the system, generating superoxide anion and hydrogen peroxide. Considerable formation of dopa was observed, but the quantity was the same irrespective of whether d -tyrosine or l -tyrosine was used as the substrate. Furthermore, formation of dopa occurred in a xanthine/xanthine oxidase system when bovine serum albumin (BSA) was substituted for tyrosinase. Our results provide no evidence that superoxide anion is an oxygen substrate for human tyrosinase. In the incubate containing xanthine/xanthine oxidase, catalase completely inhibited dopa formation, and superoxide dismutase and mannitol each strongly inhibited dopa formation. The results are compatible with hydroxyl radicals being responsible for the formation of dopa, since such radicals may be secondarily formed in the presence of superoxide anion and hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号