首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The interaction between the nicotinic acetylcholine receptor and Na+,K(+)-ATPase described previously was further studied in isolated rat diaphragm and in a membrane preparation of Torpedo californica electric organ. Three specific agonists of the nicotinic receptor: acetylcholine, nicotine and carbamylcholine (100 nmol/L each), all hyperpolarized the non-synaptic membranes of muscle fibers by up to 4 mV. Competitive antagonists of nicotinic acetylcholine receptor, d-tubocurarine (2 mcmol/L) or alpha-bungarotoxin (5 nmol/L) completely blocked the acetylcholine-induced hyperpolarization indicating that the effect requires binding of the agonists to their specific sites. The noncompetitive antagonist, proadifen (5 mcmol/L), exerted no effect on the amplitude of hyperpolarized but decreased K0.5 for this effect from 28.3 +/- 3.6 nmol/L to 7.1 +/- 2.3 nmol/L. Involvement of the Na+,K(+)-ATPase was suggested by data demonstrating that three specific Na+,K(+)-ATPase inhibitors: ouabain, digoxin or marinobufagenin (100 nmol/L each), all inhibit the hyperpolarizing effect of acetylcholine. Acetylcholine did not affectation either the catalytic activity of the Na+,K(+)-ATPase purified from sheep kidney or the transport activity of the Na+,K(+)-ATPase in the rat erythrocytes, i. e. in preparations not containing acetylcholine receptors. Hence, acetylcholine does not directly affect the Na+,K(+)-ATPase. In a Torpedo membrane preparation, ouabain (< or = 100 nmol/L) increased the binding of the fluorescent ligand: Dansyl-C6-choline (DCC). No ouabain effect was observed either when the agonist binding sites of the receptor were occupied by 2 mmol/L carbamylcholine, or in the absence Mg2+, when the binding of ouabain to the Na+,K(+)-ATPase is negligible. These results indicate that ouabain only affects specific DCC binding and only when bound to the Na+,K(+)-ATPase. The data obtained suggest that, in two different systems, the interaction between the nicotinic acetylcholine receptor and the Na+,K(+)-ATPase specifically involve the ligand binding sites of these two proteins.  相似文献   

2.
Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.  相似文献   

3.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

4.
Soluble (Na+ + K+)-ATPase consisting predominantly of alpha beta-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na+ + K+)-ATPase (35-48 mumol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na+ + K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5-3, at which 50-70% of the membrane protein was solubilized. The soluble protomeric (Na+ + K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5-6, at the expense of partial inactivation, but (Na+ + K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na+ + K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000-170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (alpha beta)2-dimers or (alpha beta)3-trimers with S20,w = 10-12 S and apparent molecular masses in the range 273 000-386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

5.
Exposure of canine cardiac sarcolemmal vesicles to alkaline media (greater than or equal to pH 12) results in the extraction of 33% of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that specific proteins are being solubilized. Most of the phospholipid and sialic acid remains with the pellet after centrifugation. Electron microscopy reveals that alkaline treatment does not cause gross morphological damage to the vesicles, although freeze-fracture demonstrates some aggregation of intramembrane particles. The data indicate that high pH probably removes peripheral proteins and leaves the integral proteins in place. We find complete recovery of Na+-Ca2+ exchange activity in alkaline-extracted membranes after solubilization and reconstitution. These vesicles contain only 50% of the protein of vesicles reconstituted from control sarcolemma. Thus, the specific activity of Na+-Ca2+ exchange is doubled. Alkaline extraction is a useful and reproducible procedure for enrichment of the Na+-Ca2+ exchange protein. (Na+ + K+)-ATPase is completely inactivated by exposure to pH 12 medium though immunodetection shows that the (Na+ + K+)-ATPase proteins are not extracted. We detect both alpha and alpha + forms of (Na+ + K+)-ATPase and deduce that the Na+ pump proteins do not comprise a major fraction of sarcolemmal protein.  相似文献   

6.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ +K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21 mumol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

7.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

8.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

9.
Palytoxin, a toxin isolated from the Caribean corrall Palythoa caribaeorum, increases the cation permeability of excitable membranes in vitro. Three membrane systems have been investigated: axonal membranes from crayfish walking leg nerves, membranes rich in nicotinic acetylcholine receptor isolated from Torpedo californica electric tissue and, for control, artificial liposomes. Ion permeability of the latter was not affected by palytoxin, but with both biological membranes an increase in cation permeability was observed at a palytoxin concentration of 0.14 microM. Palytoxin-induced cation flow through the axonal membrane was not inhibited by tetrodotoxin, indicating that the voltage-dependent sodium channels were not involved. The effect of palytoxin on the receptor-rich membranes was not blocked by alpha-bungarotoxin, a competitive antagonist of the nicotinic acetylcholine receptor, nor by triphenylmethylphosphonium, a blocker of the receptor-ion channel. But with both the axonal and the receptor-rich membranes ouabain was an inhibitor of the palytoxin-induced cation flow. Evidence is presented that it is not the (Na+ + K+)-ATPase which is affected by palytoxin as has been postulated for similar observations with non-neuronal membranes (Chhatwal, G.S., Hessler, H.-J. and Habermann, E. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 323, 261-268).  相似文献   

10.
Shono M  Wada M  Fujii T 《Plant physiology》1995,108(4):1615-1621
A Na+ -ATPase was partially purified from plasma membranes of the marine alga Heterosigma akashiwo. The plasma membranes of H. akashiwo cells were collected by differential centrifugation with subsequent discontinuous gradient centrifugation. Na+ -ATPase activity was associated with the resultant plasma membrane fraction and was stimulated to the greatest extent in the presence of 100 to 200 mM Na+, 10 mM K+, and 5 mM Mg2+ ions, pH 8.0. The Km value for Na+ ions was 12.2 mM. An apparent Km value for ATP was 880 [mu]M. A 140-kD phosphorylated intermediate was also detected in the same fraction in the presence of both Mg2+ and Na+ ions, and this protein was dephosphorylated upon the addition of K+ ions. We could partially purify the 140-kD protein after solubilization by Suc monolaurate and fractionation by sequential column chromatography on Sephacryl S-300, DEAE-Sepharose CL-6B, and Mono-Q columns. The purified 140-kD polypeptide could also be phosphorylated and be detected after acid sodium dodecyl sulfate-polyacryl-amide gel electrophoresis in the presence of Na+ and Mg2+ ions.  相似文献   

11.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane-bound (Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6--8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350--400 mumol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

12.
1. Preincubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations from rabbit kidney outer medulla with 5,5'-dithiobis-(2-nitrobenzoic acid) inhibits the (Na+ + 5+)-ATPase and K+-stimulated 4-nitro-phenylphosphatase activities. Phosphorylation of the enzyme by ATP and the Na+-stimulated ATPase activity are inhibited to the same extent as the (Na+ + K+)-ATPase activity, whereas the K+-stimulated 4-nitrophenylphosphatase activity is inhibited much less. 2. Titration with 5,5'-dithiobis-(2-nitrobenzoic acid) in sodium dodecyl sulphate shows the presence of 36 reactive sulfhydryl groups per molecule (Na+ + K+)-ATPase (Mr = 250 000). 3. Treatment with N-ethylmaleimide, resulting in complete inhibition of (Na+ + K+)-ATPase activity, leads to modification of 26 sulfhydryl groups, whereas treatment with 5,5'-dithiobis-(2-nitrobenzoic acid) results in modification of 12 sulfhydryl groups under the same conditions. 4. The reaction of N-ethylmaleimide with an essential SH-group is not prevented by previous blocking of sulfhydryl groups with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. These findings indicate the existence of at least two classes of sulfhydryl groups on the enzyme, each containing at least one vital group. The difference between these classes consists in their different reactivity towards 5,5'-dithiobis-(2-nitrobenzoic acid) and N-ethylmaleimide.  相似文献   

13.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3',5'-cyclic nucleotide phosphodiesterase, and (Na+ + K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3',5'-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500-4000A), which do not form vesicles.  相似文献   

14.
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity.  相似文献   

15.
The electric organ of Electrophorus electricus contains substances which inhibit (Na+ + K+)-ATPase activity, the specific binding of [3H]ouabain to purified (Na+ + K+)-ATPase and 86Rb+ uptake by chick cardiac cells in culture. The active organic material was extracted from microsomal membranes. Its purification was carried out by chromatography on Sep-Pak C-18 and thin-layer chromatography. Reverse-phase liquid chromatography and mass spectrometry identified the active material as a mixture of unsaturated fatty acids. Linoleic (18:2), arachidonic (20:4), linolenic (18:3) and docosahexaenoic acids (22:6) contributed to about 60% of the total activity of the active material. The other active substances could be arachidonic analogs, since they have both a lipophilic and carboxylic character. Pure unsaturated fatty acids have been shown to be active in the different biological assays used to analyze the endogenous 'ouabain-like' activity. Linolenic, arachidonic and docosahexaenoic acids were the most active, whereas saturated fatty acids and glyceryl esters or methyl esters of unsaturated fatty acids were inactive. It is possible that in pathological situations in which the level of unsaturated fatty acids increases, these molecules may then act as physiological inhibitors of the sodium pump.  相似文献   

16.
The phosphorylation of two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase by 32Pi was studied under equilibrium conditions in various enzyme preparations from rat medulla oblongata, rat cerebral cortex, rat cerebellum, rat kidney, guinea pig kidney, and rabbit kidney. In ouabain-sensitive (Na+ + K+)-ATPases such as the brain, guinea pig kidney, and rabbit kidney enzymes, ouabain stimulated the Mg2+-dependent phosphorylation at lower concentrations, while a higher concentration was required for the stimulation of rat kidney (Na+ + K+)-ATPase, an ouabain-insensitive enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that two isozymes of the brain (Na+ + K+)-ATPase were also phosphorylated by 32Pi in the presence of ouabain. The properties of the phosphorylation were compared between the medullar oblongata (referred to as alpha(+] and the kidney (referred to as alpha) (Na+ + K+)-ATPases. The steady-state level of phosphorylation was achieved faster in the kidney enzymes than in the medulla oblongata enzyme. Phosphorylation without ouabain was greater in the kidney enzymes than in the brain enzymes. Furthermore, the former enzymes were inhibited by K+ much more than the latter. These findings suggest that the two isozymes of (Na+ + K+)-ATPase differ in their conformational changes during enzyme turnover.  相似文献   

17.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 micrometer in the presence of 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate is increased by free Mg2+. The inhibition is half maximally reversed by 250 micrometer epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 micrometer epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

18.
Three derivatives of ouabain have been synthesized which alkylate the digitalis receptor. These derivatives were formed through reductive amination of p-nitrophenyltriazene (NPT) ethylenediamine to the periodate-oxidized rhamnose moiety of ouabain. The non-covalent binding of the ouabain derivatives (NPT-ouabain, designated I, II, and III) was followed (i) by their ability to inhibit the activity of sodium- and potassium-activated ATPase ((Na+,K+)-ATPase) purified from the electric organ of Electrophorus electricus, (ii) by the binding of [3H]NPT-ouabain I to the enzyme, and (iii) by the inhibition of [3H]ouabain binding with unlabeled NPT-ouabain I. Covalent modification of the digitalis site of (Na+,K+)-ATPase occurs after long periods of time. At pH 7.5 (25 degrees C) the best alkylating derivative, NPT-ouabain I, gives maximum covalent labeling after 6 h. Only the large polypeptide chain (Mr = 93,000) of the purified enzyme is specifically labeled with [3H]NPT-ouabain I while the glycoprotein chain (Mr = 47,000) is not significantly labeled. Labeling of a microsomal fraction of the electric organ with [3H]NPT-ouabain I gave the same type of gel pattern as that observed with the purified enzyme. [3H]NPT-ouabain I was also used to label the digitalis receptor in highly purified axonal membranes and in cardiac membranes prepared from embryonic chick heart. Although the (Na+,K+)-ATPase in both types of membranes has a low affinity for ouabain, [3H]NPT-ouabain I proved to be a very efficient affinity label for the digitalis receptor. In the complex mixture of polypeptides found in these membrane preparations, only a single polypeptide chain having a Mr = 93,000 is specifically labeled by [3H]NPT-ouabain I.  相似文献   

19.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

20.
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号