首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ecological and economic advantages of preventing introduction of species likely to become invasive have increased interest in implementing effective screening tools. We compared the accuracy of the Australian Weed Risk Assessment (WRA) system with that across the six geographies in which it has been tested (New Zealand, Hawaii, Hawaii and Pacific Islands, Czech Republic, Bonin Islands and Florida). Inclusion in four of the tests of a secondary screening tool, developed to reduce the number of species requiring further evaluation, decreased the number of species with that outcome by over 60% on average. Averaging across all tests demonstrated that the WRA system accurately identified major invaders 90%, and non-invaders 70%, of the time. Examined differently, a species of unknown invasive potential is on average likely to be correctly accepted or rejected over 80% of the time for all of these geographies when minor invaders are categorized as invasive. Whereas increasing consistency in definitions and implementation would facilitate understanding of the general application of the WRA system, we believe that this tool functions similarly across islands and continents in tropical and temperate climates and has been sufficiently tested to be adopted as an initial screen for plant species proposed for introduction to a new geography.  相似文献   

2.

Aim

We estimate and compare niche position, marginality and breadth of Iberian inland fishes at three geographical extents (regional, restricted to the species’ range and global) to understand the effect of spatial scale on niche metrics. Furthermore, we investigate differences in niche metrics between native and alien fish, and test for associations with introduction date of alien species and niche characterization to better understand their invasion process.

Location

Iberian Peninsula and global.

Time period

2000–2020.

Major taxa studied

Fifty-one native and 17 alien inland fish species from the Iberian Peninsula.

Methods

Outlying mean index (OMI) analyses were used to estimate the niche position, marginality and breadth of Iberian inland fishes. Climatic OMI analyses were computed at three different scales (regional, restricted to the species’ range and global). Permutational analyses of variance (PERMANOVAs) were used to test for differences in niche position, marginality and breath among native and alien species.

Results

Niche metrics differed depending on the geographical extent of the investigation, as well as with respect to species origin (native versus alien). Differences in climatic niche position between native and alien species observed at the global scale were non-existent at the regional scale. The niche breadth of widely distributed alien species was highly underestimated when only considering the invaded region, and further influenced by the first date of of species introduction.

Main conclusions

Estimating niches of freshwater species, especially of alien invaders, should carefully consider the geographical extent of the investigation. We suggest that analyses that jointly consider regional and global scales will improve the estimation of niche metrics of widely distributed organisms, particularly regarding species climatic niche, and the assessment of the invasive potential of species.  相似文献   

3.
从上海外来杂草区系剖析植物入侵的一般特征   总被引:125,自引:6,他引:125  
全球化不仅改变了世界的政治和经济格局,而且也改变了生物分布的格局,导致生物种群的重新分布,由此而产生的生物入侵已成了各国政府,国际社会和学术界所共同关心的问题,本文从上海市杂草植物区系的构成入手,揭示了该区植物入侵的特点,产生的原因以及将来的发展趋势,同时还从一般意义上探讨了入侵杂草和入侵生境的特征,植物入侵的环境和经济后果以及入侵生态学领域中重要的研究方向。  相似文献   

4.
Aim Recent studies using vegetation plots have demonstrated that habitat type is a good predictor of the level of plant invasion, expressed as the proportion of alien to all species. At local scale, habitat types explain the level of invasion much better than alien propagule pressure. Moreover, it has been shown that patterns of habitat invasion are consistent among European regions with contrasting climates, biogeography, history and socioeconomic background. Here we use these findings as a basis for mapping the level of plant invasion in Europe. Location European Union and some adjacent countries. Methods We used 52,480 vegetation plots from Catalonia (NE Spain), Czech Republic and Great Britain to quantify the levels of invasion by neophytes (alien plant species introduced after ad 1500) in 33 habitat types. Then we estimated the proportion of each of these habitat types in CORINE land‐cover classes and calculated the level of invasion for each class. We projected the levels of invasion on the CORINE land‐cover map of Europe, extrapolating Catalonian data to the Mediterranean bioregion, Czech data to the Continental bioregion, British data to the British Isles and combined Czech–British data to the Atlantic and Boreal bioregions. Results The highest levels of invasion were predicted for agricultural, urban and industrial land‐cover classes, low levels for natural and semi‐natural grasslands and most woodlands, and the lowest levels for sclerophyllous vegetation, heathlands and peatlands. The resulting map of the level of invasion reflected the distribution of these land‐cover classes across Europe. Main conclusions High level of invasion is predicted in lowland areas of the temperate zone of western and central Europe and low level in the boreal zone and mountain regions across the continent. Low level of invasion is also predicted in the Mediterranean region except its coastline, river corridors and areas with irrigated agricultural land.  相似文献   

5.
Aim Distribution maps of species based on a grid are useful for investigating relationships between scale and the number or area of occupied grid cells. A species is scaled up simply by merging occupied grid cells on the observation grid to successively coarser cells. Scale–occupancy relationships (SORs) obtained in this way can be used to extrapolate species down, in other words to compute occupancies at finer scales than the observation scale. In this paper we demonstrate that the SOR is not unique but depends on where one positions the origin of the grid map. Innovation The effect of grid origin on SORs was explored with the aid of the Dutch national data base FLORBASE, which contains the observation records of all 1410 wild vascular plants in the Netherlands on a 1‐km square basis. For each species, we generated 2500 unique SORs by scaling up from 1 km, in steps of 1 km, to squares of 50 km. We computed the sensitivity of the SOR to the grid origin for each species, and subsequently analysed the factors that determined this sensitivity. The effect of grid origin on downscaling was demonstrated by means of a simple power function that we used to extrapolate down from both a 2‐km and a 5‐km grid, to the original 1‐km grid. It appeared that the position of grid origin could have a substantial effect on SORs. The sensitivity of SORs to the position of the grid origin depended on three characteristics of a species’ spatial distribution: rarity, degree of spatial clustering and the position of the distribution relative to the border of the investigated area. Rare species with a clustered distribution near the border were particularly highly sensitive. The dependence of SOR on grid origin caused unpredictable and non‐random errors in downscaled occupancies. Main conclusions In future, the whole bandwidth of scaled occupancies should be considered when testing and interpreting mathematical relationships between scale and occupancy. Moreover, downscaled occupancies should be interpreted cautiously.  相似文献   

6.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America.  相似文献   

7.
8.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

9.
10.
Despite impressive efforts at clearing stands of invasive Australian Acacia species in South Africa, insufficient attention has been given to understanding the role of seed banks in the invasiveness and long-term persistence of populations. We review information on seeds of these species, considering seed production, seed rain, and the dynamics of seeds in three layers: leaf litter, and upper and lower seed banks in the soil. Many factors affect the accumulation and susceptibility to destruction of seed banks and thus the opportunities for intervention to reduce seed numbers for each of these components. Reduction of seed banks is crucial for the overall success of the multi-million dollar management initiatives against these species. Classical biological control of buds, flower and young pods has reduced the seed production of many Australian acacias in South Africa. Fire can be applied to reduce seed numbers in the leaf litter and upper seed bank in some cases, although there are serious problems associated with high fire intensities in dense acacia stands. Other options, e.g. soil inversion and solarisation, exist to exercise limited reduction of seed numbers in some situations. There is little prospect of meaningful reduction of seed numbers in the lower seed bank. Preventing the accumulation of seed banks by limiting seed production through biological control is by far the most effective means, and in almost all cases the only practical means, of reducing seed numbers. This must be an integral part of management strategies. Several invasive Australian acacias are already under effective biological control, and further work to identify additional potential agents for all the currently invasive species and potentially invasive alien species is the top priority for improving the efficiency of management programmes.  相似文献   

11.
Ageratina adenophora (Sprengel) R. King & H. Robinson (=Eupatorium adenophorum Sprengel) is one of the worst invasive alien species in China. Since A. adenophora was first noticed in Yunnan Province of China in the 1940s, its rapid spread has caused an ecological problem in south‐western China. Understanding its historical invasion pattern and its potential for further spread is needed to plan the management of the species. We reconstructed the historical process of its invasion and analysed its ecological preferences in the invaded region. After a lag phase of 20 years (1940–60), A. adenophora spread rapidly throughout the south and middle subtropical zones in Yunnan, Guizhou, Sichuan, and Guangxi, China, with an average expansion rate of 20 km per year. It spread relatively slowly in north subtropical areas, with an average expansion rate of 6.8 km per year. It has not established in warm temperate areas within the invaded regions. Although range expansion in Yunnan stopped after 1990, the expansion of its range into neighbouring provinces indicates that A. adenophora has not reached the full potential of its distribution and its range is still rapidly expanding within China. We applied ecological niche modelling (GARP — Genetic Algorithm for Rule‐set Prediction) to predict potential invasion areas in mainland China on the basis of occurrence points within colonized areas where A. adenophora has reached equilibrium. The predictions, confirmed by the range of values of four key environmental parameters, generally match the parameters of the geography and ecology in the invaded region. Southern and south‐central China have climatic conditions suggestive of a high potential for invasion by A. adenophora. Climatic conditions in northern and western China appear unsuitable for A. adenophora. Urgent measures should be taken to prevent this species from further spreading into the vast areas of potential habitat in southern and south‐central China.  相似文献   

12.
Modelling the distribution of invasive alien species is widely used for predicting future dispersal, response to climate change, and effects of management, but little information is available on the scale dependence of spatial models. This study is focused on Heracleum mantegazzianum , a problematic invasive plant in central and north-western Europe. The main objective was to model the current distribution of this species at national (43,000 km2) and regional scale (4900 km2) using autologistic regression with a Danish data set. Presence–absence data were used in a grid system with 5 × 5 km2 or 2 × 2 km2 as basic units. To avoid misleading presence–absence models and unreliable probability values due to unbalanced data, the prevalence was used as cut-off value, and a favourability function was applied to the model predictions. The national model showed a widespread distribution of H. mantegazzianum with highest habitat suitability in the eastern and northern parts of the country where human population density is high, winters more severe and/or loamy soils more common. At a regional scale the distribution of H. mantegazzianum is associated with alluvial sand cover, high human population density, spring precipitation, and presence of the species in neighbour grid units. The observed widespread national distribution is likely the result of anthropogenic spread of this ornamental plant, while the locally clumped distribution suggests that H. mantegazzianum naturally spreads mainly over short distances. The current distribution in Denmark resembles an intermediate invasion stage where long-distance dispersal is less important, while spread from suitable neighbour habitats is significant. The study demonstrates that the favourability function leads to improved mapping standards for invasive species.  相似文献   

13.
14.
15.
Although some invasive plants are cosmopolitan, not all ecosystems are invaded to the same degree. Yet there is little experimental work on how ecosystem resistance to invasion at the establishment phase differs among ecosystems. We conducted two field sowing experiments in two consecutive years to examine establishment of the deciduous tree Ailanthus altissima, the succulent subshrub Carpobrotus spp. and the annual geophyte Oxalis pes‐caprae in coastal dunes, shrublands and oldfields in more than 200 sites across six Mediterranean Basin islands differing in climatic conditions and local species richness. Establishment success (i.e. percentage of plots with at least one seedling) and rates (i.e. seedling to sown seed ratio) were low, especially for Ailanthus even when accounting for differences in seed viability. Oxalis was capable of producing a new cohort of seedlings the year following planting. By contrast, all Ailanthus seedlings and half the Carpobrotus seedlings died following the first summer. Differences in establishment success and rates among ecosystems were species‐, island‐ and year‐dependent. Differences in precipitation and mean temperature were associated with differences in establishment rates across sites. Establishment rates tended to be positively correlated with cumulative precipitation and negatively with mean Ta. Unexpectedly, native species richness was not a good predictor of seedling establishment, except for higher Oxalis establishment success in species rich habitats. By conducting field sowing tests at multiple sites across a region we found that except for Oxalis, Mediterranean island ecosystems are quite resistant to invader establishment. These results suggest that differences in the degree of invasion between ecosystems and islands might be more dependent upon the influence of invasion event factors (e.g. propagule pressure) or factors acting at a later life‐history stages rather than differences in the resistance imposed by ecosystems to invader recruitment. Moreover, our results support the notion that in Mediterranean ecosystems invasions are highly idiosyncratic events and strongly dependent on water availability conditions.  相似文献   

16.
Plant invasion is a major threat to the integrity of an ecosystem. Exceptionally successful invaders in Europe are the American species of Solidago genus. In this study we examined growth, reproduction, and phenology of Solidago species, of American origin, growing in central Europe (S. altissima, S. canadensis, S. gigantea, S. graminifolia). These taxa were compared with two native species: Solidago virgaurea and Tanacetum vulgare. We observed high differentiation in height, number of shoots, and biomass production between individuals within taxa. Generally, the invasive species produced substantially (two to five times) more biomass than the native ones, being statistically significant in the comparison of alien Solidago graminifolia and S. gigantea versus native S. virgaurea and T. vulgare. The ratio of biomass of reproductive parts to overall biomass varied considerably among years, but generally the lowest one was for Solidago altissima, and the highest for S. graminifolia. It shows a lack of a clear pattern of differentiation between alien and native species in terms of biomass investment in reproduction. We observed a general tendency of allocation of a major part of biomass in rhizomes by phalanx species (S. graminifolia and S. gigantea), while species with guerrilla strategy (S. altissima and S. canadensis) invested more biomass in stems and leaves. However, because of the high variability there was no clear, stable pattern of statistically significant differences between these two groups. The results suggest that S. graminifolia reveals a strong potential of invasion, in spite of its, so far limited, distribution in Europe.  相似文献   

17.
We implemented cross‐species and independent‐contrasts multiple regression models to compare life‐history correlates of invasion success between regional and continental spatial scales among non‐native plants of eastern Australia. We focussed on three life‐history traits that represent major axes of variation in plant life history: specific leaf area (SLA), plant height and seed mass. After controlling for residence time and cross‐correlation with other life‐history traits, small seed mass was significantly and uniquely correlated with invasion success at continental and regional scales. High SLA was significantly and uniquely correlated with invasion success at the continental scale only. Plant height could not explain unique variation in invasion success at either spatial scale. Variation among spatial scales in the significance and strength of life‐history relationships with invasion success suggests that the search for predictive tools of invasion need not be fruitless, as long as predictive investigations are targeted at appropriate spatial scales.  相似文献   

18.

Aim

There is a wealth of information on species occurrences in biodiversity data banks, albeit presence‐only, biased and scarce at fine resolutions. Moreover, fine‐resolution species maps are required in biodiversity conservation. New techniques for dealing with this kind of data have been reported to perform well. These fine‐resolution maps would be more robust if they could explain data at coarser resolutions at which species distributions are well represented. We present a new methodology for testing this hypothesis and apply it to invasive alien species (IAS).

Location

Catalonia, Spain.

Methods

We used species presence records from the Biodiversity data bank of Catalonia to model the distribution of ten IAS which, according to some recent studies, achieve their maximum distribution in the study area. To overcome problems inherent with the data, we prepared different correction treatments: three for dealing with bias and five for autocorrelation. We used the MaxEnt algorithm to generate models at 1‐km resolution for each species and treatment. Acceptable models were upscaled to 10 km and validated against independent 10 km occurrence data.

Results

Of a total of 150 models, 20 gave acceptable results at 1‐km resolution and 12 passed the cross‐scale validation test. No apparent pattern emerged, which could serve as a guide on modelling. Only four species gave models that also explained the distribution at the coarser scale.

Main conclusions

Although some techniques may apparently deliver good distribution maps for species with scarce and biased data, they need to be taken with caution. When good independent data at a coarser scale are available, cross‐scale validation can help to produce more reliable and robust maps. When no independent data are available for validation, however, new data gathering field surveys may be the only option if reliable fine‐scale resolution maps are needed.  相似文献   

19.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

20.
In addition to their impact on natural habitats, invasive alien plants can have a significant negative effect on agricultural systems and cause economic losses. Flood‐irrigated orchards in the Mediterranean Basin are vulnerable to the invasion of alien weeds, primarily because of the traditional management practices used in the orchards, which are characterized by high soil moisture during the dry summer period, nutrient availability and high levels of disturbance. This study sought to determine whether their biological traits can explain the success of alien weed species. To answer this question, 408 floristic relevés were conducted in 136 flood‐irrigated orchards on the Plains of Lleida (Catalonia, NE of Spain). Richness and cover of native and alien weeds were compared. Furthermore, a set of biological traits were compared between successful and non‐successful weeds for the whole data and separately between native and alien weeds using logistic regression and classification trees. In flood‐irrigated orchards, alien species covered most of their area, even though the richness of alien species was lower than that of the native species. The most important species were C4 species with seeds dispersed by water, and on the other hand, rosulate and caespitose‐reptant hemicryptophytes with long flowering period. Most of these traits fitted with those of the invasive alien weeds, which were mostly C4 species with seeds dispersed by water. Perennial life form characterized successful native weeds. In this study, we discuss how the traditional management of flood irrigation in fruit‐tree orchards favours invasive alien weeds that have specific traits, acting as a reservoir for the spread of alien weeds into other crops and surrounding riparian habitats. We also propose changing management practices in order to avoid the selection of alien weeds and to promote native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号