首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gap junctions have been isolated from four murine tissues, from rat and Xenopus laevis liver, and from Nephrops norvegicus (Norway lobster) hepatopancreas. The preparations of gap junctions from each vertebrate tissue contain a single major protein, Mr 16000, and those from Nephrops hepatopancreas a protein, Mr 18000. Immunocytochemical studies using affinity-purified antibodies raised against gap junctions from Nephrops show the junctional origin of the 18k protein. Immunological studies using Western blotting and biochemical studies using tryptic peptide mapping show no significant differences between the 16k junctional proteins of mouse and hence provide no evidence of tissue variation. These studies also suggest that the mouse, rat, and Xenopus 16 k proteins and the Nephrops 18 k protein share some common structural features.  相似文献   

2.
Isolation and characterisation of arthropod gap junctions   总被引:3,自引:0,他引:3       下载免费PDF全文
Gap junctions have been isolated from the hepatopancreas of the crustacean arthropod, Nephrops norvegicus (Norway lobster). SDS-PAGE of these preparations shows two major protein bands, mol. wt. 18 000 (18 K) and mol. wt. 28 000 (28 K). The 18-K and 28-K proteins are interconvertible, cannot be distinguished by two dimensional tryptic and chymotryptic peptide mapping, and therefore appear to be different (most likely monomeric and dimeric) forms of the same protein. The protein can also aggregate to higher multimeric forms mol. wt. 38 000 (presumed trimer), and mol. wt. 52 000 (presumed tetramer). The buoyant density of the isolated gap junctions in continuous potassium iodide gradients is 1.260 g/cm3. The junctions are progressively solubilized in increasing SDS concentrations, mostly between 0.1% and 0.2% SDS, and this is accompanied by the release of the 18-K and 28-K forms of the junctional protein. The Nephrops hepatopancreas 18-K junctional protein has antigenic determinants in common with the vertebrate 16-K junctional protein as shown by cross-reactivity with two different affinity purified antibody preparations. However, no detectable similarity can be seen between the major 125I-labelled tryptic and chymotrytpic peptides of the Nephrops hepatopancreas 18-K protein and the mouse liver 16-K protein.  相似文献   

3.
Calmodulin and other calcium-modulated proteins bind in vitro to purified junctional polypeptides from rat liver gap junctions, bovine lens fiber junctions, a chymotryptic fragment from bovine lens junctions, and crayfish hepatopancreas gap junctions. The potential biological relevance of the interaction of calmodulin with junctional proteins is suggested by immunocytochemical localization of endogenous calmodulin in cortical regions of the cell where gap junctions exist. These observations provide a molecular basis for understanding the potential regulatory role of calmodulin on cell-cell communication channels in vivo. In addition, the calmodulin binding represents the first molecular homology that has been found for junctional channel proteins from mammalian and arthropod tissues.  相似文献   

4.
Gap junction preparations made from mouse liver plasma membranes by alkali extraction contain variable proportions of connexins (Cx32 and Cx26) and the 16-kDa protein which is closely related or may be identical to the 16-kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and the mediatophore complex. The absence of a stoichiometric relationship suggests that connexins and the 16-kDa protein are not subunits of the same channel complex, but analysis of alkali preparations by isopycnic centrifugation shows both types of protein are in membrane structures of the same buoyant density. Electron microscopic analysis of alkali preparations shows a homogeneous population of gap junctions of uniform morphology and width, suggesting the proteins are in the same or similar structures. The structures containing connexins and the 16-kDa protein can be separated by treatment of the plasma membranes with Triton X-100. After such treatment, the connexins remain associated with dense cellular or extracellular material and the gap junctional structures, after further extraction with N-lauroyl sarcosine and urea, contain only the 16-kDa protein. These detergent-extracted gap junctions are thinner (14.1 nm) than those in alkali preparations (18.4 nm).  相似文献   

5.
The topological organization of the major rat liver gap junction protein has been examined in intact gap junctions and gap junction-derived single membrane structures. Two methods, low pH and urea at alkaline pH, were used to "transform" or "split" double membrane gap junctions into single membrane structures. Low pH treatment "transforms" rat liver gap junctions into small single membrane vesicles which have an altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after digestion with L-1-to-sylamido-2-phenylethylchloromethyl ketone-trypsin. Alkaline pH treatment in the presence of 8 M urea can split isolated rat liver gap junctions into single membrane sheets which have no detectable structural alteration or altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after proteolytic digestion, suggesting that these single membrane sheets may be useful for topological studies of the gap junction protein. Proteolytic digestion studies have been used to localize the carboxyl terminus of the molecule on the cytoplasmic surface of the intact gap junction. However, the amino terminus does not appear to be accessible to proteases or to interaction with an antibody that is specific for the amino-terminal region of the molecule in intact or split gap junctions. Binding of antibodies, that block junctional channel conductance, can be eliminated by proteolytic digestion of intact gap junctions, suggesting that all antigenic sites for these antibodies are located on the cytoplasmic surface of the intact gap junction. In addition, calmodulin gel overlays indicate that at least two calmodulin binding sites exist on the cytoplasmic surface of the junctional protein. The information generated from these studies has been used to develop a low resolution two-dimensional model for the organization of the major rat liver gap junctional protein in the junctional membrane.  相似文献   

6.
Gap junction structures were assembled in vitro from octyl-beta-D-glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = b = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

7.
《The Journal of cell biology》1988,107(6):2587-2600
The architecture of the junctional sarcoplasmic reticulum (SR) and transverse tubule (T tubule) membranes and the morphology of the two major proteins isolated from these membranes, the ryanodine receptor (or foot protein) and the dihydropyridine receptor, have been examined in detail. Evidence for a direct interaction between the foot protein and a protein component of the junctional T tubule membrane is presented. Comparisons between freeze-fracture images of the junctional SR and rotary-shadowed images of isolated triads and of the isolated foot protein, show that the foot protein has two domains. One is the large hydrophilic foot which spans the junctional gap and is composed of four subunits. The other is a hydrophobic domain which presumably forms the SR Ca2+-release channel and which also has a fourfold symmetry. Freeze-fracture images of the junctional T tubule membranes demonstrate the presence of diamond-shaped clusters of particles that correspond exactly in position to the subunits of the feet protein. These results suggest the presence of a large junctional complex spanning the two junctional membranes and intervening gap. This junctional complex is an ideal candidate for a mechanical coupling hypothesis of excitation-contraction coupling at the triadic junction.  相似文献   

8.
Gap junction structures were assembled in vitro from octyl-β- -glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = B = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

9.
Tannic acid mordanting during fixation of isolated vesicles from skeletal muscle enhanced the resolution of the images. Isolated triadic junctions displayed two characteristic features not previously described: (a) a clear gap separated terminal cisternae from transverse tubules; (b) this gap was bridged by a separating array of structures which resembled the "feet" of intact muscle. When the triad was broken in a French press and subsequently reassembled by joining the two organelles, a similar gap was seen but the structure of the feet was less well defined. When the membrane of the triad was extracted by Triton X-100, the junctional region was retained and a similar gap between the two organelles could be discerned. The terminal cisternae characteristically displayed a thickening of the cytoplasmic leaflet of the membrane in select areas in which electron-dense material was apposed on the luminal leaflet. This thickened membrane was not observed in longitudinal reticulum or in terminal cisternae regions distal to the electron-dense matter. This thickened leaflet was not invariably associated with the junction, and some junctional regions did not display discernible thickening of the membrane. When the triad was treated with KCl, the electron-dense aggregate was dispersed and the thickened leaflet of the terminal cisternae dissipated, whereas the triadic junctional region with its feet remained unchanged. KCl treatment caused dissolution of three proteins of Mr = 77,000, 43,000, and 38,000. Treatment of Triton-resistant vesicles with KCl caused the loss of electron-dense aggregate but did not otherwise influence the appearance of the junction. A good degree of correlation both qualitatively and in quantitative parameters between the isolated vesicles and the intact muscle was observed.  相似文献   

10.
Summary Gap junctions exist in the septa between the segments of the lateral giant axons in the ventral nerve cord of the crayfish Procambarus. A large increase in the resistance (uncoupling) of these gap junctions was brought about by mechanical injury to the axonal segments. Both thin sections and freeze-fracture preparations were used to monitor the morphological changes which occurred up to 45 min after injury.There was no apparent change in the organization (a loose polygonal array) of the intramembrane particles which make up the junctional complex up to 45 min after injury. In some instances, however, the intramembrane particles appeared to have moved away from the junctional area. Other junctional regions were internalized and appeared similar to what have been called annular gap junctions. Also at this time (20–25 min after injury), a dense cytoplasmic plug formed in uninjured axon near the junctional region. It is concluded that the gap junctions that exhibit a loose polygonal organization of the intramembrane particles may be either in a state of low resistance (coupled) or a state of high resistance (uncoupled).  相似文献   

11.
Basic fibroblast growth factor (bFGF) is a ubiquitous and multifunctional polypeptide that is believed to have a role in tissue repair and to act as a morphogen in embryonic development. Here, we have used immunohistochemical and biochemical methods with antibodies directed against the amino-terminal domain of bFGF, designated IS2, which recognize native and denatured bFGF, to demonstrate that in addition to its known intracellular and extracellular localization in heart, bFGF is also associated with cardiomyocyte gap junctions. In tissue sections, IS2 labeled regions of intercalated discs, producing an immunofluorescence pattern virtually indistinguishable from that obtained with antibodies against the heart gap junction protein connexin-43. By electron microscopy, gap junctions but not other regions of plasma membrane were heavily immunolabeled with this antibody. By solid phase immunoassay, bFGF was found to be more concentrated in a fraction enriched in cardiac gap junctions than in whole sarcolemmal preparations. Finally, an 18-kDa protein was recognized by several different antibodies specific for bFGF on Western blots of heart subcellular fractions enriched in gap junctions. We suggest that bFGF-like peptides are either an integral part of, or exist in close association with, cardiac gap junctions and thus may play a role in modulating gap junctional intercellular communication.  相似文献   

12.
Summary The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with 20 mM NaOH or 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergentalkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).  相似文献   

13.
Summary The crustacean hepatopancreas is a major metabolic center intimately involved in molting and vitellogenesis. Cells of the hepatopancreas exhibit one of the richest endowments of gap junctions known and are thus presumed to be linked for intercellular communication. In order to monitor hepatopancreatic activity during the molt cycle of crayfish (Orconectes propinquus), the electrical coupling between cells of the hepatopancreatic tubules was measured during postmolt, intermolt and premolt. Samples of hepatopancreas from each of these stages were fixed and freeze-fractured to correlate morphologic features of gap junctions with electrophysiological data. Analysis of the data revealed that ionic coupling was greater in postmolt and premolt tubule cells than in cells of intermolt animals. Platinum replicas of hepatopancreatocyte plasmalemmata revealed that in postmolt, gap junction plaques were smaller and more numerous than those in intermolt and premolt; however, the total area of gap junction plaques per unit membrane area analyzed was approximately the same for hepatopancreatocytes from all molt stages. Although the hepatopancreatic gap junctions exhibited no quantitative differences, those from post- and premolt animals were rounded with tightly packed particles, while plaques from intermolt animals were generally pleomorphic with loosely packed particles. Results of this study suggest that cells of the crayfish hepatopancreas are more coupled in pre- and postmolt, with macular plaques of tightly packed particles, perhaps as a response to the increased metabolic demands of molt, and less well coupled, with irregular plaques of loosely packed junctional particles, during intermolt. The only recognizable morphological correlates of increased cell coupling were tight packing of junctional particles into rounded plaques, while decreased coupling corresponded to junctions with loosely packed irregular aggregates of particles.Supported by the Natural Sciences and Engineering Research Council of Canada (RRS)  相似文献   

14.
Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.  相似文献   

15.
Tong JJ  Liu X  Dong L  Ebihara L 《Biophysical journal》2004,87(4):2397-2406
Cx46 and Cx50 are coexpressed in lens fiber cells where they form fiber-fiber gap junctions. Recent studies have shown that both proteins play a critical role in maintaining lens transparency. Although both Cx46 and Cx50 (or its chicken ortholog, Cx45.6) show a high degree of sequence homology, they exhibit marked differences in gap junctional channel gating, unitary gap junctional channel conductance, and hemichannel gating. To better understand which regions of the protein are responsible for these functional differences, we have constructed a series of chimeric Cx46-Cx45.6 gap junctional proteins in which a single transmembrane or intracellular domain of Cx45.6 was replaced with the corresponding domain of Cx46, expressed them in Xenopus oocyte pairs or N2A cells, and examined the resulting gap junctional conductances. Our results showed that four out of six of the chimeras induced high levels of gap junctional coupling. Of these chimeras, only Cx45.6-46NT showed significant changes in voltage-dependent gating properties. Exchanging the N-terminus had multiple effects. It slowed the inactivation kinetics of the macroscopic junctional currents so that they resembled those of Cx46, reduced the voltage sensitivity of the steady-state junctional conductance, and decreased the conductance of single gap junctional channels. Additional point mutations identified a uniquely occurring arginine in the N-terminus of Cx46 as the main determinant for the change in voltage-dependent gating.  相似文献   

16.
We have studied the effects of phospholipase C from Clostridium welchii on gap junctions in the intact mouse liver and in a junction-rich fraction prepared from mouse liver. Treatment of the isolated junctions results in the disappearance of both the 20 A gap and of the polygonal lattice visible with lanthanum. The junctions are morphologically unaltered, however, when whole livers are perfused with phospholipase via the portal vein. These results suggest that extracellular phospholipase cannot diffuse into the junctional area, but that the enzyme may affect structures within the gap from its cytoplasmic surfaces which become exposed in the isolated preparations. Horseradish peroxidase, which has physical dimensions similar to those of Clostridium phospholipase is also denied access to the 20 A gap in whole liver, while peroxidase reaction product can be seen in the gap in isolated preparations. Beef liver catalase, however, a tracer molecule much larger than peroxidase, cannot penetrate even in isolated fractions. If the cytoplasmic approaches to the gap junction used by peroxidase and phospholipase are available in vivo, and have not been created during the process of mechanical isolation, they may play a role in cell-to-cell passage of molecules larger than ions.  相似文献   

17.
The cells of the intestinal tract and the stigmatal cells of the branchial basket have been studied in a range of tunicates including phlebobranch, aplousobranch and stolidobranch ascidians, as well as the doliolid and pyrosomatid thaliaceans. The intercellular gap junctions between gut cells appear conventional in thin section as do those found in the lower part of adjacent stigmatal cells. However, save for the stolidobranchs, the stigmatal cells also have a second kind of gap junction which exhibit an unusual fibrous density in association with their junctional cytoplasmic surfaces; these are found in the apical region of the cells. The fibrous density is particularly well demonstrated in specimens treated with tannic acid during fixation, and subsequent en bloc uranyl acetate staining. In the branchial basket the position of these apical gap junctions is at regular intervals between adhaering junctions, which have a more substantial paramembranous fibrous mat; these two kinds of junctions alternate along deeply undulating membrane appositions. With freeze-fracture, after chemical or cryo-fixation, the gap junctions of the gut and those of the lower part of the stigmatal cells appear typical, with P-face connexons, while in the apical part of cells of the branchial basket the two faces of the gap junctions are very difficult to cleave apart. Frequently the P- and E-faces are found to adhere together in replicas, so that in these apical gap junctional regions, plaques of E-face with pits overlie the PF particles. In addition, regions of cytoplasm, into which the dense fibres project, often cleave over these adhaering E-faces of the apical gap junctions. The presence of these unusual gap junctional features in the apical region of the stigmata in the vicinity of cilia is discussed as regards their functional role.  相似文献   

18.
A 70-kDa lens membrane polypeptide (MP70) is a specific component of the fiber gap junctions. The C-terminal portion of MP70 is removed by age-related proteolytic processing, leaving an N-terminal 38-kDa polypeptide (MP38) in the membrane. Membrane association and topology of MP70 and of its processed form MP38 have been studied by hydrophobic labeling with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and phenyl isothio[14C]cyanate. Membrane-embedded segments have been identified. They are localized in the N-terminal 30-kDa portion of MP70 and MP38. The C-terminal 40-kDa portion of MP70 appears to be exposed entirely at the cytoplasmic side of the junctional membranes. Hence, potentially poreforming peptide segments in the MP70 molecule are conserved upon age-related processing to MP38.  相似文献   

19.
The perineurial junctional complexes in the nerve cord of Periplaneta americana have been shown to consist of septate desmosomes, extensive gap junctions and relatively limited regions of tight junctions. Microperoxidase (M.W. 1,900) undergoes limited intercellular penetration into the septate desmosomes. Lanthanum penetrates both the septate desmosomes and gap junctions. It is concluded that the restricted access of these substances to the underlying extracellular spaces results from the presence of the perineurial tight junctions. These results contrast with those for small peripheral nerves, which lack equivalent junctional complexes, and in which the extracellular spaces are found to be accessible to externally applied lanthanum. The results are discussed in relation to current concepts of the insect blood-brain barrier.  相似文献   

20.
Immunocytochemical investigations have previously shown that antibodies specific for mammal connexins labeled in situ rat and mouse brain gap junctions. However brain gap-junction proteins have neither been identified with certainty, nor purified. By immunoblotting, anti-peptide antibodies directed against rat heart connexin 43 (CX43) detect a major protein of 41 kDa in rat brain homogenates. The specificity of these antibodies made it possible to establish an affinity-chromatography purification procedure of the 41-kDa protein. Purified antibodies specific for the sequence SAEQNRMGQ (residues 314-322) of rat heart CX43 were covalently bound to a protein-A-Sepharose-CL-4B matrix. Rat brain homogenates were recycled through the immunomatrix and the material specifically bound to the matrix was then competitively eluted with the peptide SAEQNRMGQY. Analysis by SDS/PAGE of eluates demonstrated that they contain a 41-kDa protein associated with low amounts of high-molecular-mass proteins. By immunoblotting, these proteins were shown to be specifically recognized by antibodies directed against residues 5-17, 55-56, and 314-322 of rat heart CX43. The NH2-terminal partial sequence for the 41-kDa protein was determined by microsequencing and shown to be similar to alpha 1 connexins. This is the first successful purification of a junctional protein from brain tissue and provides direct evidence that the 41-kDa protein is a CX43 gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号