首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.  相似文献   

3.
Three short open reading frames (ORFs) reside in the 5' leader of Rous sarcoma virus (RSV) and are conserved in all avian sarcoma-leukosis retroviruses. Both extensions of the lengths of the ORFs and alterations in their initiation codons affect viral replication and gene expression. To determine whether the effects on viral replication were due to translational regulation mediated by the ORFs, we examined translation following mutation of the initiation and termination codons of each of the three ORFs. We found that the ORFs marginally enhanced downstream gene expression. Moreover, repression of downstream gene translation was proportional to the lengths of the elongated ORFs and depended on the initiation contexts of the AUG codons. Although the ORFs play a major role in viral activities, their effects on translation were relatively minor. Rather, the ORFs may affect the fate of unspliced avian retroviral RNA in chronically infected cells by participating in the sorting of viral RNA for either translation or encapsidation into virions.  相似文献   

4.
基因的表达失控是疾病发生的主要原因之一,干扰靶基因的表达可能成为有效的治疗手段。RNA干扰技术是近年兴起的基因调控干预方法,其基础,特别是应用研究极受关注,人们期待RNA干扰能成为肿瘤、病毒感染等难治疾病的临床治疗手段。然而,这一新兴技术在应用研究过程中显现出诸多问题,如细胞毒性、引起机体非特异性反应等等。就RNA干扰引起的非特异性免疫反应展开综述,探讨其机制,期望为RNA干扰的应用研究提供一些思考。  相似文献   

5.
Vagner S  Galy B  Pyronnet S 《EMBO reports》2001,2(10):893-898
Studies on the control of eukaryotic translation initiation by a cap-independent recruitment of the 40S ribosomal subunit to internal messenger RNA sequences called internal ribosome entry sites (IRESs) have shown that these sequence elements are present in a growing list of viral and cellular RNAs. Here we discuss their prevalence, mechanisms whereby they may function and their uses in regulating gene expression.  相似文献   

6.
RNA sensors: novel regulators of gene expression   总被引:5,自引:0,他引:5       下载免费PDF全文
Kaempfer R 《EMBO reports》2003,4(11):1043-1047
  相似文献   

7.
8.
9.
Yi G  Gopinath K  Kao CC 《Journal of virology》2007,81(4):1601-1609
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.  相似文献   

10.
11.
Translation initiation of hepatitis C virus (HCV) occurs through an internal ribosome entry site (IRES) located at its 5'-end. As a positive-stranded RNA virus, HCV uses its genome as a common template for translation and replication, but the coordination between these two processes remains poorly characterized. Moreover, although genetic evidence of RNA-protein interactions for viral replication is accumulating because of subgenomic replicons and a recent culture system for HCV, such interactions are still contentious in the regulation of translation. To gain insight into such mechanisms, we addressed the involvement of cis and trans viral factors in HCV IRES activity by using a cell-based RNA reporter system. We found that the HCV 3' noncoding region (NCR) strongly stimulates IRES efficiency in cis, depending on the genotype and the cell line. Moreover, we confirmed the role of the core protein in viral gene expression as previously reported in vitro. Surprisingly, we observed a similar effect, i.e. a twofold increase under low amounts of NS5B RNA polymerase, followed by a decrease at higher concentrations. However, no contribution of NS5A to HCV IRES-mediated translation was noted and no cooperative effect could be detected between 3' NCR and viral proteins or between proteins. Collectively, these results suggest that HCV RNA translation is regulated, and that the switch from translation to replication might involve a sequential requirement for both cis and trans viral factors, because of their apparent lack of synergy, probably with the aid of host factors.  相似文献   

12.
Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.  相似文献   

13.
Mammalian host factors required for efficient viral gene expression and propagation have been often recalcitrant to genetic analysis. A case in point is the function of cellular factors that trans-activate internal ribosomal entry site (IRES)-driven translation, which is operative in many positive-stranded RNA viruses, including all picornaviruses. These IRES trans-acting factors have been elegantly studied in vitro, but their in vivo importance for viral gene expression and propagation has not been widely confirmed experimentally. Here we use RNA interference to deplete mammalian cells of one such factor, the polypyrimidine tract binding protein, and test its requirement in picornavirus gene expression and propagation. Depletion of the polypyrimidine tract binding protein resulted in a marked delay of particle propagation and significantly decreased synthesis and accumulation of viral proteins of poliovirus and encephalomyocarditis virus. These effects could be partially restored by expression of an RNA interference-resistant exogenous polypyrimidine tract binding protein. These data indicate a critical role for the polypyrimidine tract binding protein in picornavirus gene expression and strongly suggest a requirement for efficient IRES-dependent translation.  相似文献   

14.
RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins. These solutions are enabled by the ability of the RNA genome to fold into 3D structures that can mimic cellular RNAs, hijack host proteins, and expose or occlude regulatory protein-binding motifs to ultimately control key process in the viral life cycle. We highlight recent findings focusing on less conventional mechanisms of gene expression and new discoveries on the role of RNA structures.  相似文献   

15.
Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.  相似文献   

16.
Cellular mechanisms that regulate the replication of hepatitis C virus (HCV) RNA are poorly understood. p21-activated kinase 1 (PAK1) is a serine/threonine kinase that has been suggested to participate in antiviral signaling. We studied its role in the cellular control of HCV replication. Transfection of PAK1-specific small interfering RNA enhanced viral RNA and protein abundance in established replicon cell lines as well as cells infected with chimeric genotype 1a/2a HCV, despite reducing cellular proliferation, suggesting specific regulation of HCV replication. PAK1 knockdown did not reduce interferon regulatory factor 3-dependent gene expression, indicating that this regulation is independent of the retinoic acid-inducible gene I/interferon regulatory factor 3 pathway. On the other hand, LY294002 and rapamycin abolished PAK1 phosphorylation and enhanced HCV abundance, suggesting that the mammalian target of rapamycin (mTOR) is involved in PAK1 regulation of HCV. Small interfering RNA knockdown of the mTOR substrate p70 S6 kinase abrogated PAK1 phosphorylation and enhanced HCV RNA abundance, whereas overexpression of a constitutively active alternate substrate, eukaryotic translation initiation factor 4E-binding protein 1, increased cap-independent viral translation and viral RNA abundance without influencing PAK1 phosphorylation. Similar data indicated that mTOR is regulated by both phosphatidylinositol 3-kinase/Akt and ERK. Taken together, the data indicate that p70 S6 kinase activates PAK1 and contributes to phosphatidylinositol 3-kinase- and ERK-mediated regulation of HCV RNA replication.  相似文献   

17.
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double-stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene-specific therapeutics.  相似文献   

18.
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.  相似文献   

19.
近年来的研究发现,生物体内存在着大量的非编码RNA(non.codingRNAs,ncRNA),它们在染色质修饰、基因转录、RNA剪接和mRNA翻译等多种水平上参与了基因表达的调控。ncRNA中的小分子RNA如miRNA能够识别特定的目标mRNA,通过与mRNAs3’非翻译区结合,影响mRNA转录及蛋白质翻译;siRNA是RNA干扰的引发物,能够导致与dsRNA同源的mRNA降解,进而抑制相应基因表达;saRNA是目前最新发现的一种靶向目的基因启动子区的在转录水平激活目的基因表达的dsRNA。miRNA、siRNA和saRNA在生成机制、作用途径等方面关系密切,既区别又相互联系,小分子RNA的研究将是今后分子生物学的研究热点之一。  相似文献   

20.
Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号