首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

2.
Spectral EMG parameters are being used as an objective evaluation of low back rehabilitation programs. The reliability of these spectral parameters is important in determining the validity of this evaluation tool. Two groups of eight subjects, with no history of back pain, were measured: the first group every day for one week; the second group one day per week for four weeks. During each session, subjects performed a 30-second isometric fatiguing contraction of the back extensors at 60% MVC followed by a 60-second rest and a 10-second repeat contraction. The intraclass correlation coefficient (ICC) did not demonstrate high reliability (ICC<0.6) for the rate of median power frequency (MedPF) change (Hz/s), the magnitude of the recovery (Hz) and differences between the dominant and the non-dominant sides within a subject. However, the initial MedPF (Hz) of the fatigue and repeat contractions demonstrated excellent reliability (ICC>0.8) with five or more repeated measures. The practical implication of this work is that the experimental condition must have sufficiently large changes in MedPF (signal)—at least larger than the variability inherent in the MedPF (noise)—to constitute a valid measure.  相似文献   

3.
PurposeLumbar multifidus is a complex muscle with multi-fascicular morphology shown to be differentially controlled in healthy individuals during sagittal-plane motion. The normal behaviour of multifidus muscle regions during walking has only received modest attention in the literature. This study aimed to determine activation patterns for deep and superficial multifidus in young adults during walking at different speeds and inclination.MethodsThis observational cohort study evaluated ten healthy volunteers in their twenties (three women, seven men) as they walked on a treadmill in eight conditions; at 2 km/h and 4 km/h, each at 0, 1, 5, and 10% inclination. Intramuscular EMG was recorded from the deep and superficial multifidus unilaterally at L5. Activity was characterized by: amplitude of the peak of activation, position of peak within the gait cycle (0–100%), and duration relative to the full gait cycle.ResultsAcross all conditions superficial multifidus showed higher normalised EMG amplitude (p < 0.01); superficial multifidus peak amplitude was 232 ± 115% higher when walking at 4 km/h/10%, versus only 172 ± 77% higher for deeper region (p < 0.01). The percentage of the gait cycle where peak EMG amplitude was detected did not differ between regions (49 ± 13%). Deep multifidus duration of activation was longer when walking at the faster vs slower speed at all inclinations (p < 0.01), which was not evident for superficial multifidus (p < 0.05). Thus, a significantly longer activation of deep multifidus was observed compared to superficial multifidus when walking at 4 km/h (p < 0.05).ConclusionsDifferential activation within lumbar multifidus was shown in young adults during walking. The prolonged, more tonic activation of deep relative to superficial regions of multifidus during gait supports a postural function of deeper fibres.  相似文献   

4.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

5.
    
The current study aimed to investigate differences in activity of neck flexor and extensor muscles in women with migraine considering the chronicity of their condition. Thirty-one subjects with episodic migraine, 21 with chronic migraine and 31 healthy controls participated. Surface electromyography signals were recorded bilaterally from the sternocleidomastoid, anterior scalene, splenius capitis and upper trapezius muscles as subjects performed 5 stages of cranio-cervical flexion (CCF), representing a progressive increase in range of CCF motion. Comparison of normalized root-mean-square among groups was conducted with 3 × 5 ANCOVA with task level as the within-subject variable, group as the between-subject variable, and the presence of neck pain and disability as co-variates. The group with chronic migraine exhibited increased activity of their extensor muscles compared to the control and episodic migraine groups (splenius capitis: F = 3.149, P = 0.045; upper trapezius: F = 3.369, P = 0.041). No significant between-group differences were found for the superficial neck flexors (sternocleidomastoid: F = 1.161, P = 0.320; anterior scalene: F = 0.135, P = 0.874). In conclusion, women with chronic migraine exhibit increased activity of their superficial neck extensor muscles when acting as antagonists during low-load isometric CCF contractions in comparison to non-headache subjects.  相似文献   

6.
A general multi-scale strategy is presented for modeling the mechanical environment of a group of neurons that were embedded within a collagenous matrix. The results of the multi-scale simulation are used to estimate the local strains that arise in neurons when the extracellular matrix is deformed. The distribution of local strains was found to depend strongly on the configuration of the embedded neurons relative to the loading direction, reflecting the anisotropic mechanical behavior of the neurons. More importantly, the applied strain on the surrounding extracellular matrix is amplified in the neurons for all loading configurations that are considered. In the most severe case, the applied strain is amplified by at least a factor of 2 in 10% of the neurons' volume. The approach presented in this paper provides an extension to the capability of past methods by enabling the realistic representation of complex cell geometry into a multi-scale framework. The simulation results for the embedded neurons provide local strain information that is not accessible by current experimental techniques.  相似文献   

7.
Various studies have reported alterations of spinal kinematics in patients with chronic low back pain (CLBP) during gait. However, while recent findings stressed the importance of multi-segment analysis, most of prior gait studies modelled the lumbar spine as one segment, when it was not the entire trunk that was considered as a single segment. Therefore, there is a need for comprehensive multi-segment research that could improve our understanding of CLBP pathomechanism and thus possibly contribute to better care for CLBP. This study aimed at characterizing the angle patterns at the lower lumbar (LLS), upper lumbar (ULS), lower thoracic (LTS) and upper thoracic (UTS) joints in the three anatomical planes and at comparing CLBP patients and asymptomatic subjects. Spinal kinematics of 11 CLBP patients and 11 controls was measured using a marker-based motion capture system and described according to a previously proposed multi-segment biomechanical model. Characteristic patterns were observed at the UTS, LTS and ULS joints in the transverse plane and at the UTS, ULS and LLS joints in the frontal plane. CLBP patients walked with smaller frontal-plane LLS range of motion than controls. The results also suggested that patients had more asymmetrical LTS motion in the transverse plane. In conclusion, this work extended prior literature by showing specific CLBP-related alterations in multi-segment spinal kinematics during gait. Further research is necessary to understand the factors influencing kinematics alterations and how treatment strategies might improve motor behaviour in CLBP patients.  相似文献   

8.
9.
    
The purpose of this study was to determine the intratester reliability of surface electromyography (EMG) assessment of the gluteus medius muscle in healthy people and people with chronic nonspecific low back pain (CNLBP) during barefoot walking. Gluteus medius muscle activity was measured twice in 40 people without and 30 people with CNLBP approximately 7 days apart. Walking gluteus medius muscle activity was normalised to maximal voluntary isometric contractions during side-lying hip abduction with manual resistance. Good intratester reliability (ICC > 0.75) was found for mean, peak, and peak to peak amplitude for healthy people. Only mean amplitude demonstrated good intratester reliability in those with CNLBP. Peak amplitude and peak to peak amplitude of the gluteus medius muscle of those with CNLBP, and the time of peak amplitude in both groups, demonstrated moderate reliability (ICC ranged from 0.50 to 0.58). Moderate to large standard error of measurement and minimal detectable change values were reported for outcome measurements. These results suggest that potentially large levels of random error can occur between sessions. Future research can build on this study for those with pathology and attempt to establish change values for EMG that are clinically meaningful.  相似文献   

10.
Trunk stabilization is achieved differently in patients with low back pain compared to healthy controls. Many methods exist to assess trunk stabilization but not all measure the contributions of intrinsic stiffness and reflexes simultaneously. This may pose a threat to the quality/validity of the study and might lead to misinterpretation of the results. The aim of this study was to provide a critical review of previously published methods for studying trunk stabilization in relation to low back pain (LBP). We primarily aimed to assess their construct validity to which end we defined a theoretical framework operationalized in a set of methodological criteria which would allow to identify the contributions of intrinsic stiffness and reflexes simultaneously. In addition, the clinimetric properties of the methods were evaluated. A total of 133 articles were included from which four main categories of methods were defined; upper limb (un)loading, moving platform, unloading and loading. Fifty of the 133 selected articles complied with all the criteria of the theoretical framework, but only four articles provided information about reliability and/or measurement error of methods to assess trunk stabilization with test–retest reliability ranging from poor (ICC 0) to moderate (ICC 0.72). When aiming to assess trunk stabilization with system identification, we propose a perturbation method where the trunk is studied in isolation, the perturbation is unpredictable, force controlled, directly applied to the upper body, completely known and results in small fluctuations around the working point.  相似文献   

11.
Abstract

The spine or ‘back’ has many functions including supporting our body frame whilst facilitating movement, protecting the spinal cord and nerves and acting as a shock absorber. In certain instances, individuals may develop conditions that not only cause back pain but also may require additional support for the spine. Common movements such as twisting, standing and bending motions could exacerbate these conditions and intensify this pain. Back braces can be used in certain instances to constrain such motion as part of an individual’s therapy and have existed as both medical and retail products for a number of decades. Arguably, back brace designs have lacked the innovation expected in this time. Existing designs are often found to be heavy, overly rigid, indiscrete and largely uncomfortable. In order to facilitate the development of new designs of back braces capable of being optimised to constrain particular motions for specific therapies, a numerical and experimental design strategy has been devised, tested and proven for the first time. The strategy makes use of an experimental test rig in conjunction with finite element analysis simulations to investigate and quantify the effects of back braces on flexion, extension, lateral bending and torsional motions as experienced by the human trunk. This paper describes this strategy and demonstrates its effectiveness through the proposal and comparison of two novel back brace designs.  相似文献   

12.
    
The intrinsic and extrinsic muscles are considered to stabilize the foot and contribute to propulsion during walking. This study aimed to clarify the functional relationship between intrinsic and extrinsic muscles during walking. Thirteen healthy men participated in this study. The muscle activities of the intrinsic muscles (quadratus plantae and abductor hallucis), and the extrinsic muscles (flexor hallucis longus, flexor digitorum longus, and tibialis posterior) were measured using fine-wire and surface electromyography during walking. The muscle onset timing after foot contact was calculated and compared among muscles using the one-way ANOVA. The stance phase was divided into early and late braking, and early and late propulsion phases. Muscle activity among phases was compared using repeated-measures ANOVA. The onset time of the abductor hallucis was significantly earlier than those of the flexor digitorum longus and tibialis posterior. The quadratus plantae demonstrated significantly earlier onset than that of the tibialis posterior. In the late propulsion phase, the activity of extrinsic muscles decreased, whereas intrinsic muscles were continuously active. Early activation of the intrinsic muscles may stabilize the foot for efficient torque production by the extrinsic muscles. Furthermore, the intrinsic muscles may contribute to the final push-off after the deactivation of extrinsic muscles.  相似文献   

13.
Volume conduction models for surface EMG; confrontation with measurements   总被引:8,自引:0,他引:8  
Volume conduction models are used to describe and explain recorded motor unit potentials (MUPs). So far it has remained unclear which factors have to be taken into account in a volume conduction model. In the present study, five different models are confronted with measured MUP distributions over the skin surface above the m. biceps brachii generated by MUs at different depths and recorded by small surface electrodes. All model simulations include fibres of finite length. The models differ in the size of the volume conductor (finite/infinite), the number of different layers (1, 2 or 3) and the conductivities of these layers (representing muscle, subcutaneous fat and skin). All measured and simulated MUPs contain a mainly negative propagating wave followed by a positive wave simultaneously present at all electrode positions. The magnitude of the different MUP components relative to each other and as a function of motor unit (MU) and electrode position differ between the models studied and the measurements. All simulated MUPs changed faster with observation distance than the measured MUPs. The three-layer model, in which muscle tissue was surrounded by a subcutaneous fat layer and by a layer of skin resulted in MUPs closest to the measured MUPs.  相似文献   

14.
The giant lantern shark, Etmopterus baxteri, is taken as bycatch of commercial fisheries that operate in deepwater off southeastern Australia. Bands on the second dorsal spine were used to obtain age estimates. The number of bands on the external surface of the spine and within the inner dentine layer increased with animal length. Most spines had more bands on the external surface, and the rate of band formation was significantly different between the external surface and the inner dentine layer. Females had a maximum of 57 external bands and 26 internal bands, while males had up to 48 external bands and 22 internal bands. Age estimates from external bands suggest maturity (A 50) at 20 years for males and 30 years for females. Internal band age estimates suggest maturity at 10.5 years for males and 11.5 years for females. Although there is a large discrepancy between these two preliminary (i.e., unvalidated) age estimates, they both suggest that E. baxteri is a long-lived and late maturing species that is likely to be susceptible to over fishing.  相似文献   

15.
    
Introduction: Chronic low back pain (CLBP) and fear of movement (kinesiophobia) are associated with an overactivation of paravertebral muscles during forward bending. This impairs spine motor control and contributes to pain perpetuation. However, the abdominal muscles activation is engaged too in spine stabilization but its modulation with kinesiophobia remains unknown. Our study tested whether CLBP and kinesiophobia affected the activation pattern of abdominal muscles during trunk flexion/extension. Methods: Surface electromyographical recordings of the internal oblique/transversus abdominis (IO/TrA) and external oblique (EO) muscles were analyzed in 12 people with CLBP and 13 pain-free subjects during low-velocity forward bending back and forth from erected posture. Tampa Scale of Kinesiophobia was also administrated. Results: IO/TrA activation, but not EO, was modulated across the phases of movement in both groups, i.e. maximal at onset of flexion and end of extension, and minimal at full flexion. In CLBP group only, IO/TrA activation was increased near to full trunk flexion and in correlation with kinesiophobia. Conclusions: The phase-dependence of IO/TrA activation during trunk flexion/extension in standing may have a role in spine motor control. The influence of kinesiophobia in CLBP should be further investigated as an important target in CLBP management.  相似文献   

16.
    
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   

17.
    
Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject’s forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation.  相似文献   

18.
摘要 目的:探讨表面肌电图在腰痛患者腰椎Oswestry功能障碍指数(ODI)和日本骨科协会评估治疗分数(JOA)评估中的临床应用。方法:选择2019年6月至2020年6月我院接诊的80例腰痛患者进行研究,通过将患者按照腰部VAS评分的不同划为对照组(VAS评分≤5分)和观察组(5分<VAS评分<10分),每组各40例,两组患者均接受接受常规治疗和肌电仪检测。比较治疗前后两组患者运动传导速度(MCV)、股神经的感觉传导速度(SCV)、动作电位的潜伏期、长肌力(IMS)、腰背肌后伸活动度(ROM)、ODI指数和JOA评分的变化情况。结果:治疗后,观察组运动传导速度、股神经的感觉传导速度指标水平均低于对照组,动作电位的潜伏期长于对照组(P<0.05);观察组长肌力、腰背肌后伸活动度指标水平均低于对照组(P<0.05);观察组Oswestry功能障碍指数(ODI)高于对照组,日本骨科协会评估治疗分数(JOA)评分低于对照组(P<0.05)。结论:腰痛患者中存在着明显的表面肌电图信号改变,且随着腰痛程度的加剧,改变程度越明显,有助于评估患者病情。  相似文献   

19.
A computer simulation model was developed to compare the result of cervical traction therapy in inclined and sitting traction positions. The behavior of the model was shown to match with the intervertebral changes in the upper and lower spine from the data of a radiographic experiment. Both the results of the experiment and the simulation also showed that in the inclined position, the amount of posterior separations in the upper cervical spine remains constant regardless of traction angle, while the posterior separations at lower cervical spine increases along with traction angles. Using the simulation model, parametric studies were conducted to investigate the intervertebral space changes in response to different traction angles in the inclined and sitting positions. When using the sitting position, the subject’s hip joint stiffness was shown to cause larger variations in the intervertebral space than in the inclined position. In addition, variations in the tension/compression stiffness was shown to cause the largest changes in the resulting separations in both positions but the variations in anterior space changes were larger in the sitting position. Our study suggests that the inclined position is less sensitive to variations in the subject's body parameters and is able to provide a more reliable and predictable traction result than the sitting position.  相似文献   

20.
Electromyogram (EMG) analyses (surface, intramuscular and evoked potentials) in studies of muscle function have attracted increasing attention during recent years and have been applied to assess muscle endurance capacity, anaerobic and lactate thresholds, muscle biomechanics, motor learning, neuromuscular relaxation, optimal walking and pedalling speeds, muscle soreness, neuromuscular diseases, motor unit (MU) activities (MU recruitment and rate coding), and skeletal muscle fatigue. This paper deals with the use of EMG analyses employed in the area of applied physiology and is divided into three sections: surface EMG analyses; intramuscular EMG analyses; and evoked potential analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号