首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
The 18 extranuclear mutants of Neurospora crassa, without exception, have abnormal mitochondrial respiratory systems. On the basis of genetic, phenotypic and physiological criteria, these mutants are divided into four groups: 1) the cytochrome aa3 and b deficient "poky" variants that are defective in mitochondrial ribosomes assembly, 2) the cytochrome aa3 deficient mutants, [mi-3] and [exn-5], that appear to have genetic lesions affecting a component of a regulatory system controlling cytochrome aa3 synthesis, 3) the cytochrome aa3 and b deficient "stopper" mutants with physiological lesions that probably affect mitochondrial protein synthesis, and 4) cni-3, a mutant that is constitutive for an inducible mitochondrial cyanide-insensitive oxidase in spite of having a normal cytochrome mediated electron-transport system. It is proposed that the mitochondrial genophore not only codes for cellular components that are essential for the formation of the mitochondrial protein synthesizing apparatus, but also for components of a regulatory system that coordinates the expression of nuclear and mitochondrial genes during the biogenesis of the mitochondrial electorn-transport system.  相似文献   

4.
5.
6.
Cyclophilin (cyclosporin A-binding protein) has a dual localization in the mitochondria and in the cytosol of Neurospora crassa. The two forms are encoded by a single gene which is transcribed into mRNAs having different lengths and 5' termini (approximately 1 and 0.8 kilobases). The shorter mRNA specifies the cytosolic protein consisting of 179 amino acids. The longer mRNA is translated into a precursor polypeptide with an amino-terminal extension of 44 amino acids which is cleaved in two steps upon entry into the mitochondrial matrix. Neurospora cyclophilin shows about 60% sequence homology to human and bovine cyclophilins.  相似文献   

7.
Neurospora crassa is a filamentous fungus that grows on semisolid media by forming spreading colonies. Mutations at several loci prevent this spreading growth. cot-1 is a temperature sensitive mutant of N.crassa that exhibits restricted colonial growth. At temperatures above 32 degrees C colonies are compact while at lower temperatures growth is indistinguishable from that of the wild type. Restricted colonial growth is due to a defect in hyphal tip elongation and a concomitant increase in hyphal branching. We have isolated a genomic cosmid clone containing the wild type allele of cot-1 by complementation. Sequence analyses suggested that cot-1 encodes a member of the cAMP-dependent protein kinase family. Strains in which we disrupted cot-1 are viable but display restricted colonial growth. Duplication, by ectopic integration of a promoter-containing fragment which includes the first one-third (209 codons) of the structural gene, unexpectedly resulted in restricted colonial growth. Our results suggest that an active COT1 kinase is required for one or more events essential for hyphal elongation.  相似文献   

8.
The conidia of Neurospora crassa entered logarithmic growth after a 1-h lag period at 30 degrees C. Although [14C]leucine is incorporated quickly early in growth, cellular protein data indicated that no net protein synthesis occurred until after 2 h of growth. Neurospora is known to produce ethanol during germination even though respiratory enzymes are present. Also, Neurospora mitochondria isolated from cells less than 3-h old are uncoupled. Since oxygen uptake increased during germination, was largely cyanide-sensitive, and reached a maximum at 3 h, it is hypothesized that during early germination the uncoupled electron transport chain merely functions to dispose of reducing equivalents generated by substrate level ATP production. The rate of protein synthesis in vitro by mitochondria isolated from 0-8-h-old cells increased as did cell age. Mitochondrial protein synthesis in vivo, assayed in the presence of 100 mug cycloheximide/ml, increased from low levels in the cinidia to peak levels at 3-4 h of age and then slowly decreased. The rate of mitochondrial protein synthesis in vivo was linear for at least 90 min in 0-4-h-old cells, but declined after 15 min of incorporation in 6 and 8-h-old cells. The products of mitochondrial protein synthesis in vivo were analyzed with dodecylsulfate gel electrophoresis and autoradiography. Early in germination 80% of the synthesis was of two small proteins (molecular weights 7200 and 9000). At 8 h 85% of the radioactivity was in 10 larger proteins (12 200 to 80 000). Within the high-molecular-weight class, proteins of between 12 000 and 21 500 molecular weight were preferentially lavelled early in germination, whereas after 8 h of growth proteins of 27 500 to 80 000 molecular weight were preferentially labelled. It is hypothesized that the 7200 and 9000-molecular-weight products of mitochondrial protein synthesis combine with other proteins to form the larger proteins found later in growth. The availability of these other proteins in cells of different ages could affect the rate of mitochondrial protein synthesis in vivo.  相似文献   

9.
10.
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant. The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence.  相似文献   

11.
12.
13.
At elevated temperatures, the Neurospora crassa mutant colonial, temperature-sensitive 3 (cot-3) forms compact, highly branched colonies. Growth of the cot-3 strain under these conditions also results in the loss of the lower molecular weight (LMW) isoform of the Ser/Thr protein kinase encoded by the unlinked cot-1 gene, whose function is also involved in hyphal elongation. The unique cot-3 gene has been cloned by complementation and shown to encode translation elongation factor 2 (EF-2). As expected for a gene with a general role in protein synthesis, cot-3 mRNA is abundantly expressed throughout all asexual phases of the N. crassa life cycle. The molecular basis of the cot-3 mutation was determined to be an ATT to AAT transversion, which causes an Ile to Asn substitution at residue 278. Treatment with fusidic acid (a specific inhibitor of EF-2) inhibits hyphal elongation and induces hyperbranching in a manner which mimics the cot-3 phenotype, and also leads to a decrease in the abundance of the LMW isoform of COT1. This supports our conclusion that the mutation in cot-3 which results in abnormal hyphal elongation/branching impairs EF-2 function and confirms that the abundance of a LMW isoform of COT1 kinase is dependent on the function of this general translation factor.  相似文献   

14.
15.
The Neurospora crassa nuclear mutant cyt-21-1 (originally 297-24; Pittenger, T.H., and West, D.J. (1979) Genetics 93, 539-555) has a defect leading to gross deficiency of mitochondrial small ribosomal subunits. Here, we have cloned the cyt-21+ gene from a N. crassa genomic library, using the sib selection procedure (Akins, R. A., and Lambowitz, A. M. (1985) Mol. Cell Biol. 5, 2272-2278). The genomic clone contains a short split gene encoding a basic protein of 107 amino acid residues. This protein shows strong homology to Escherichia coli ribosomal protein S-16. Comparison of mutant and wild-type mitochondrial ribosomal proteins (Kuiper, M. T. R., Holtrop, M., Vennema, H., Lambowitz, A. M., and de Vries, H. (1988) J. Biol. Chem. 263, 2848-2852) indicates that the cyt-21 gene encodes N. crassa mitochondrial ribosomal protein S-24. The expression of the cyt-21+ gene is regulated such that the level of the putative cyt-21+ mRNA is increased about 5-fold when mitochondrial protein synthesis is inhibited. We suggest that this reflects part of a general mechanism for coordinately activating Neurospora nuclear genes that encode mitochondrial constituents in response to impaired mitochondrial function. This is the first report of the cloning and characterization of a mitochondrial ribosomal protein gene from N. crassa.  相似文献   

16.
A temperature-sensitive mutant of Neurospora was isolated which appeared to be defective in the initiation of protein synthesis. The defect in mutant 34Cts was apparently due to a single gene mutation, and was recessive in heterokaryons. Conidial germination was normal and hyphal growth was nearly so in the mutant at 20 C, but both were greatly inhibited at 35 C. After 15 min at 35 C there was a reduced rate of protein synthesis, followed by decreases in ribonucleic acid and deoxyribonucleic acid synthesis. The percentage of ribosomes in polysomes declined at 35 C and the average size of polysomes decreased. Because the decrease in protein synthesis, it was believed that some part of the translational system may be affected by the mutation. Mutant 34Cts was given the designation psi-1.  相似文献   

17.
cys-3, the positive-acting master sulfur regulatory gene of Neurospora crassa, turns on the expression of an entire set of unlinked structural genes which encode sulfur-catabolic enzymes. cys-3 encodes a protein of 236 amino acid residues and contains a potential bipartite DNA-binding domain which consists of a leucine zipper and an adjacent highly basic region. Gel band mobility shift and DNA footprint experiments were used to demonstrate that the CYS3 protein, expressed in Escherichia coli, binds to three distinct sites in the 5' upstream DNA of cys-14, the structural gene for sulfate permease II. The CYS3 protein also binds to one distinct sequence element upstream of the cys-3 gene itself, which suggests an autoregulatory role for this protein. Two mutant CYS3 proteins, altered in the basic region of the DNA-binding domain, failed to bind to either the cys-14 or the cys-3 upstream recognition elements.  相似文献   

18.
Mitochondrial nuclease activity in Neurospora crassa occurs in membrane-bound and soluble forms in approximately equal proportions. These activities apparently are due to the same enzyme, which has an approximate molecular weight of 120 000. A portion of the insoluble enzyme appears to be associated with the inner mitochondrial membrane and is resistant to solubilization by detergent treatment as well as by physical disruption methods.  相似文献   

19.
H Chen  J W Crabb  J A Kinsey 《Genetics》1998,148(1):123-130
The expression of the am (glutamate dehydrogenase) gene is dependent upon two upstream activating sequences, designated URSam(alpha) and URSam(beta). A heteromeric nuclear protein Am Alpha Binding protein (AAB) binds specifically to a CCAAT box within the URSam(alpha) element. AAB appears to be composed of three components. We used polyclonal antiserum raised against the highly purified AAB1 subunit to isolate a partial aab-1 cDNA clone, which was then used to isolate a full-length cDNA and a genomic clone. The full-length cDNA has the potential to encode a 272 amino acid protein with a calculated molecular weight of 30 kD. Amino acid sequence obtained by Edman analysis of the AAB1 protein confirmed that the aab-1 gene had been cloned. AAB-1 shows similarity to the HAP5 protein of yeast and the CBF-C protein of rat. Each of these proteins is an essential subunit of their respective heteromeric CCAAT binding proteins. The aab1 gene maps on linkage group III of Neurospora crassa near the trp-1 locus. Disruption of the aab-1 gene results in pleiotropic effects on growth and development as well as a 50% reduction in glutamate dehydrogenase levels. Transformation of the aab-1 disruption mutant strain with the cloned genomic copy of the aab-1 gene rescued all of the phenotypic alterations associated with the aab-1 mutation.  相似文献   

20.
We showed previously that the cyt-21+ gene of Neurospora crassa encodes a mitochondrial ribosomal protein homologous to Escherichia coli ribosomal protein S-16 (Kuiper, M. T. R., Akins, R. A., Holtrop, M., de Vries, H., and Lambowitz, A. M. (1988) J. Biol. Chem. 263, 2840-2847). A mutation in this gene, cyt-21-1, results in deficiency of mitochondrial small ribosomal subunits and small rRNA (Collins, R. A., Bertrand, H., LaPolla, R. J., and Lambowitz, A. M. (1979) Mol. Gen. Genet. 177, 73-84). In the present work, cloning and sequencing of the cyt-21-1 mutant allele show that it contains a single dG to dA transition at the 3' splice site AG of the first intron in the protein coding region. This mutation leads to inactivation of the normal 3' splice site and activation of a cryptic 3' splice site, 15 nucleotides downstream. The use of this cryptic splice site results in an in-frame deletion of 5 amino acids from the cyt-21 protein. Comparison of mutant and wild-type mitochondrial small ribosomal subunit proteins showed one protein, S-24, with an altered electrophoretic mobility, consistent with the predicted deletion. The mutant ribosomal protein is still capable of binding to mitochondrial small ribosomal subunits, but results in abnormal mitochondrial ribosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号