首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

2.
The muscarinic acetylcholine receptor (mAcChR) has been prepared from pig atrial membranes by new large scale procedures which result in 30-40 fold enrichment of the receptor in the membrane-bound state and a further three fold enrichment during solubilization. The membrane-bound receptor was prepared by differential and sucrose density gradient centrifugation in 25 mM imidazole, 1 mM EDTA, pH 7.4. A double extraction procedure using a mixed digitonin/cholate detergent was used to solubilize the receptor at a 60-70% yield. The membrane and solubilized preparations had specific activities of 3.5-5 and 8-12 pmol [3H]L-quinuclidinyl benzilate (QNB) binding sites per mg of protein, respectively. The presence of imidazole, which behaved as a weak muscarinic ligand, stabilized the receptor during solubilization and storage. Both the membrane-bound and detergent-solubilized mAcChR bound antagonists at a single class of sites and agonists at two subclasses of QNB sites. The proportion of high affinity agonist sites in the solubilized receptor was about 1/3 that in the membrane receptor. [3H]Propylbenzilylcholine mustard covalently labeled a single prominent atropine-sensitive component with an apparent molecular weight of 70-74,000 on SDS-polyacrylamide gels for both the membrane and solubilized receptor.  相似文献   

3.
We investigated the molecular mechanisms and the binding site location for the fluorophor crystal violet (CrV), a noncompetitive antagonist of the nicotinic acetylcholine receptor (AChR). To this end, radiolabeled competition binding, fluorescence spectroscopy, Schild-type analysis, patch-clamp recordings, and molecular dynamics approaches were used. The results indicate that (i) CrV interacts with the desensitized Torpedo AChR with higher affinity than with the resting state at several temperatures (5-37 degrees C); (ii) CrV-induced inhibition of the phencyclidine (PCP) analogue [(3)H]thienylcyclohexylpiperidine binding to the desensitized or resting AChR is mediated by a steric mechanism; (iii) tetracaine inhibits CrV binding to the resting AChR, probably by a steric mechanism; (iv) barbiturates modulate CrV binding to the resting AChR by an allosteric mechanism; (v) CrV itself induces AChR desensitization; (vi) CrV decreases the peak of macroscopic currents by acting on the resting AChR but without affecting the desensitization rate from the open state; and (vii) two tertiary amino groups from CrV may bind to the alpha1-Glu(262) residues (located at position 20') in the resting state. We conclude that the CrV binding site overlaps the PCP locus in the resting and desensitized state. The noncompetitive action of CrV may be explained by an allosteric mechanism in which the binding of CrV to the extracellular mouth of the resting receptor leads to an inhibition of channel opening. Binding of CrV probably increases desensitization of the resting channel and stabilizes the desensitized state.  相似文献   

4.
Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.  相似文献   

5.
A F Ikin  Y Kloog  M Sokolovsky 《Biochemistry》1990,29(9):2290-2295
The N-methyl-D-aspartate (NMDA)/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of Mr 67,000, 57,000, 46,000, and 33,000. [3H]Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (Kd) of [1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (Bmax) for [3H]TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of [3H]TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.  相似文献   

6.
The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [3H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6′) and valine (position 13′) rings, and (c) inhibits [3H]TCP, [3H]ibogaine, and [3H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization.  相似文献   

7.
The sigma-receptor, a distinct binding site in brain tissue that may mediate some of the psychotomimetic properties of benzomorphan opiates and phencyclidine, has been solubilized using the ionic detergent sodium cholate. Binding assays were performed with the solubilized receptor using vacuum filtration over polyethyleneimine-treated glass fiber filters. The pharmacological specificity of the solubilized binding site for sigma-receptor ligands is nearly identical to the membrane-bound form of the receptor, with the order of potencies for displacement of the selective sigma-ligand [3H]di-o-tolylguanidine ([3H]DTG) closely correlated. The stereoselectivity for (+)-benzomorphan opiate enantiomers was retained by the solubilized receptor. The soluble receptor retained high affinity for binding of [3H]DTG (KD = 28 +/- 0.5 nM) and (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-[3H]3-PPP] (KD = 36 +/- 2 nM). Photoaffinity labeling of the solubilized receptor by [3H]p-azido-DTG, a sigma-selective photoaffinity label, resulted in labeling of a 29-kilodalton polypeptide identical in size to that labeled in intact membranes. Estimation of the Stokes radius of the [3H]DTG binding site was obtained by Sepharose CL-6B chromatography in the presence of 20 mM cholate and calculated to be 8.7 nm. This value was identical to the molecular size found for the binding sites of the sigma-selective ligands (+)-[3H]3-PPP and (+)-[3H]SKF-10,047, supporting the hypothesis that all three ligands bind to the same macromolecular complex.  相似文献   

8.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

9.
Alpha-bungarotoxin (alpha-BTX) is a highly toxic snake neurotoxin that binds to acetylcholine receptor (AChR) at the neuromuscular junction, and is a potent inhibitor of this receptor. In the following we review multi-phase research of the design, synthesis and structure analysis of peptides that bind alpha-BTX and inhibit its binding to AChR. Structure-based design concomitant with biological information of the alpha-BTX/AChR system yielded 13-mer peptides that bind to alpha-BTX with high affinity and are potent inhibitors of alpha-BTX binding to AChR (IC(50) of 2 nM). X-Ray and NMR spectroscopy reveal that the high-affinity peptides fold into an anti-parallel beta-hairpin structure when bound to alpha-BTX. The structures of the bound peptides and the homologous loop of acetylcholine binding protein, a soluble analog of AChR, are remarkably similar. Their superposition indicates that the toxin wraps around the binding-site loop, and in addition, binds tightly at the interface of two of the receptor subunits and blocks access of acetylcholine to its binding site. The procedure described in this article may serve as a paradigm for obtaining high-affinity peptides in biochemical systems that contain a ligand and a receptor molecule.  相似文献   

10.
Fatty acids as well as phencyclidine (PCP) inhibit the ion channel activity of the nicotinic acetylcholine receptor (AChR) by a noncompetitive mechanism. However, the exact localization of the fatty acid binding sites is unknown and, thus, the noncompetitive inhibitory mechanism for these endogenous modulators remains to be elucidated. In an attempt to determine the location of the fatty acid binding sites, we study the mutually exclusive action between 5-doxylstearate (5-SASL), a derivative of the endogenous noncompetitive antagonist (NCA) stearic acid, and other exogenous NCAs. For this purpose, both equilibrium and competitive binding assays using fluorescent and radiolabeled ligands were performed on desensitized AChRs. More specifically, we determined: (i) the effect of 5-SASL on the binding of the exogenous NCA [(3)H]PCP; (ii) the effect of 5-SASL on the binding of either quinacrine or ethidium, two fluorescent NCAs from exogenous origin; and (iii) the PCP-induced displacement of quinacrine and ethidium from their respective high-affinity binding sites. Our first target (i) is carried out by measuring the [(3)H]PCP binding in the absence or in the presence of increasing concentrations of 5-SASL. We found that 5-SASL displaces PCP from its low-affinity binding sites. The low-affinity PCP binding sites were pharmacologically characterized by an apparent dissociation constant (K(d)) of 6.1 +/- 5.0 microM and a stoichiometry of 3.7 +/- 1.5 sites per AChR. The fact that 5-SASL increased the apparent K(d) without changing the number of sites per AChR is indicative of a mutually exclusive action. From these results, an apparent inhibition constant (K(i)) of 75 +/- 31 microM for 5-SASL was calculated. In addition, 5-SASL affected neither the apparent K(d) (0.46 +/- 0.37 microM) nor the stoichiometry (1.07 +/- 0.57 sites per AChR) of the high-affinity PCP binding site. The second objective (ii) is achieved by titrating either quinacrine or ethidium into AChR native membranes in the absence or in the presence of increasing concentrations of 5-SASL. These experiments showed that 5-SASL efficiently increased the apparent K(d) of quinacrine without perturbing the interaction of ethidium with its high-affinity locus. Considering that (a) 5-SASL effectively quenched the AChR-bound quinacrine fluorescence (H. R. Arias, Biochim. Biophys. Acta 1347, 9-22, 1997) and (b) fluorescence-quenching is a short-range process, it is possible to suggest that 5-SASL displaces quinacrine from its high-affinity binding site by a steric mechanism. In this regard, a K(i) of 38 +/- 5 microM for 5-SASL was calculated. Concerning the last objective (iii), AChR-bound quinacrine or ethidium was back titrated with PCP. Two PCP K(i) values were obtained by fitting the displacement plots by nonlinear regression with two components. The lowest K(i) values obtained for either quinacrine (0.86 +/- 0.37 microM) or ethidium (0. 29 +/- 0.23 microM) displacement from their respective high-affinity binding sites coincide with the previously determined high-affinity [(3)H]PCP K(d). In addition, the highest K(i) values obtained for either NCA displacement are in the same concentration range as the observed low-affinity [(3)H]PCP K(d). Taking into account all experimental data, we reached the following conclusions: (i) fatty acid molecules, or at least 5-SASL, sterically interact with both the PCP low-affinity and the quinacrine high-affinity binding sites; (ii) the low-affinity PCP binding sites, as well as the high-affinity quinacrine locus, are located at the nonannular lipid domain of the AChR; and, finally, (iii) fatty acid molecules are not accessible to the lumen of the ion channel, indicating an allosteric mode of action for fatty acids to inhibit ion flux. Thus, the 5-SASL, the quinacrine high-affinity, and the PCP low-affinity binding sites are all located at overlapping nonannular loci on the muscle-type AChR.  相似文献   

11.
Long-chain alkanols are general anesthetics which can also act as uncharged noncompetitive inhibitors of the peripheral nicotinic acetylcholine receptor (AChR) by binding to one or more specific sites on the AChR. Cembranoids are naturally occurring, uncharged noncompetitive inhibitors of peripheral and neuronal AChRs, which have no demonstrable general anesthetic activity in vivo. In this study, [3H]tenocyclidine ([3H]TCP), an analogue of the cationic noncompetitive inhibitor phencyclidine (PCP), was used to characterize the cembranoid and long-chain alkanol sites on the desensitized Torpedo californica AChR and to investigate if these sites interact. These studies confirm that there is a single cembranoid site which sterically overlaps the [3H]TCP channel site. This cembranoid site probably also overlaps the sites for the cationic noncompetitive inhibitors, procaine and quinacrine. Evidence is also presented for one or more allosteric cembranoid sites which negatively modulate cembranoid affinity for the inhibitory site. In contrast, long-chain alkanols inhibit [3H]TCP binding through an allosteric mechanism involving two or more alkanol sites which display positive cooperativity toward each other. Double inhibitor studies show that the cembranoid inhibitory site and the alkanol sites are not independent of each other but interfere allosterically with each other's inhibition of [3H]TCP binding. The simplest models consistent with the observed data are presented and discussed.  相似文献   

12.
Abstract: The influence of calcium on the binding of phencyclidine (PCP) to acetylcholine (ACh) receptor-rich membrane fragments was investigated. Calcium decreased the equilibrium affinity for PCP in the presence, but not in the absence, of the cholinergic agonist carbamylcholine. The effect of calcium was rapidly reversible by EGTA, indicating that it was not attributable to a calcium-activated protease or a phospholipase. Following detergent solubilization of the nicotinic ACh receptor, the calcium effect on PCP remained, suggesting that calcium may interact directly with the receptor to exert its effect. Other divalent cations (Mn2+, La2+ Co2+, Mg2+) had similar effects. A correlate of "desensitization" of the ACh receptor can be observed using PCP binding, and a two-step "desensitization" process can be observed. Calcium seemed to increase the amplitude of a rapid component of receptor "desensitization." The results presented in this paper suggest that calcium may play a role in the modulation of the nicotinic ACh receptor.  相似文献   

13.
The sigma receptor is a neuronal substrate that binds several psychoactive compounds. These include cocaine, some steroids, dextromethorphan, phencyclidine (PCP), and benzomorphans such as pentazocine and N-allyl-normatezocine (SKF-10047). Many newer atypical antipsychotic drugs also bind to the sigma receptor. The sigma receptor, however, is not the PCP receptor. The sigma receptor exists in the central nervous system, endocrine, immune and certain peripheral tissues. Progesterone and certain steroids have been shown to represent endogenous ligands for the sigma receptor. The sigma receptor resides likely in the nonsynaptic region of the plasma membrane. The sigma receptor exists in two forms: high-affinity and low-affinity. The solubilized sigma receptor retains all of the pharmacological characteristics of a membrane-bound receptor. A major physiological role of the sigma receptor may involve the modulation of a tonic potassium channel.  相似文献   

14.
H P Moore  M A Raftery 《Biochemistry》1979,18(10):1862-1867
The interaction of a cholinergic depolarizing agent, bromoacetylcholine, with acetylcholine receptor (AcChR) enriched membrane fragments and Triton-solubilized, purified AcChR from Torpedo californica has been studied. The reagent bound to membrane-bound AcChR reversibly with an apparent dissociation constant of 16 +/- 1 nM at equilibrium. This 600-fold higher affinity for the receptor than found from physiological studies [Kact congruent to 10 micrometers; Karlin, A. (1973) Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 1847--1853] can be attributed to a ligand-induced affinity change of the membrane-bound receptor upon preincubation with bromoacetylcholine. At equilibrium [3H]bromoacetylcholine, like acetylcholine, bound to half the number of alpha-bungarotoxin sites present in the preparation without apparent positive cooperativity, and this binding was competitively inhibited by acetylcholine. In the presence of dithiothreitol, [3H]bromoacetylcholine irreversibly alkylated both membrane-bound and solubilized, purified acetylcholine receptor, with a stoichiometry identical with that for reversible binding. NaDodSO4-polyacrylamide gel electrophoresis of the labeled acetylcholine receptor showed that only the 40 000-dalton subunit contained the label. From these results it is concluded that the 40 000-dalton subunit represents a major component of the agonist binding site of the receptor.  相似文献   

15.
The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the hα3β4 AChR ion channel with relatively high affinity (Kd = 0.46 ± 0.06 μM), and ibogaine inhibits [3H]ibogaine binding to the desensitized hα3β4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the hα3β4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6′) and valine/phenylalanine (position 13′) rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.  相似文献   

16.
Abstract: The muscarinic acetylcholine receptor from porcine atria exhibits sialoglycoprotein characteristics based on its sensitivity to neuraminidase digestion and its ability to interact specifically with lectin affinity resins when solubilized with a digitonin/cholate mixed detergent system. Differential lectin binding properties of the neuraminidase-treated and untreated receptor suggest that high-affinity binding to immobilized wheat germ agglutinin is accomplished through the presence of both terminal sialic acid and internal N -acetylglucosamine or its β(1→4)-linked oligomers.  相似文献   

17.
α-Bungarotoxin (α-BTX) is a highly toxic snake neurotoxin that binds to acetylcholine receptor (AChR) at the neuromuscular junction, and is a potent inhibitor of this receptor. In the following we review multi-phase research of the design, synthesis and structure analysis of peptides that bind α-BTX and inhibit its binding to AChR. Structure-based design concomitant with biological information of the α-BTX/AChR system yielded 13-mer peptides that bind to α-BTX with high affinity and are potent inhibitors of α-BTX binding to AChR (IC50 of 2 nM). X-Ray and NMR spectroscopy reveal that the high-affinity peptides fold into an anti-parallel β-hairpin structure when bound to α-BTX. The structures of the bound peptides and the homologous loop of acetylcholine binding protein, a soluble analog of AChR, are remarkably similar. Their superposition indicates that the toxin wraps around the binding-site loop, and in addition, binds tightly at the interface of two of the receptor subunits and blocks access of acetylcholine to its binding site. The procedure described in this article may serve as a paradigm for obtaining high-affinity peptides in biochemical systems that contain a ligand and a receptor molecule.  相似文献   

18.
In receptor-rich vesicles isolated from Torpedo, paramagnetic or fluorescent phosphonium ions bind to both the acetylcholine receptor (AcChR) and the receptor membrane. When added to receptor vesicles, two to three phosphoniums undergo a slow time-dependent binding to the AcChR. The presence of agonist increases the rate but not the extent of binding of the alkylphosphonium nitroxides. Approximately one phosphonium per receptor can be displaced by the addition of saturating concentrations of the high-affinity histrionicotoxin derivative isodihydrohistrionicotoxin or by the addition of phencyclidine or quinacrine mustard. In addition, preincubation of the receptor with these channel blockers prevents approximately one phosphonium from binding to the receptor. When a series of alkyltriphenylphosphonium ions was studied, it was found that the rate of phosphonium binding to the receptor decreased with increasing probe hydrophobicity. This appears to be a function of the partitioning of the probe between membrane and aqueous phases. The phosphonium ions used here promote desensitization of the receptor, as judged by the binding rate of the fluorescent agonist NBDA-C5-acylcholine or alpha-bungarotoxin. Preincubation of the receptor with isodihydrohistrionicotoxin virtually eliminates the phosphonium-mediated desensitization. The rates of the phosphonium-mediated desensitization also appear to be dependent upon the phase partitioning of the probe. These results strongly suggest that the binding sites for the phosphonium ion (and the high-affinity histrionicotoxin blocking site) are accessible only through the aqueous phase. The phosphonium binding and agonist-induced transitions observed here are not observed with a negative hydrophobic ion probe, or a negative surface amphiphile, indicating that modifications in membrane electrostatics do not contribute to the observed changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
J W Karpen  G P Hess 《Biochemistry》1986,25(7):1777-1785
Noncompetitive inhibition of acetylcholine receptor-controlled ion translocation was studied in membrane vesicles prepared from both Torpedo californica and Electrophorus electricus electroplax. Ion flux was measured in the millisecond time region by using a spectrophotometric stopped-flow method, based on fluorescence quenching of entrapped anthracene-1,5-disulfonic acid by Cs+, and a quench-flow technique using 86Rb+. The rate coefficient of ion flux prior to receptor inactivation (desensitization), JA, was measured at different acetylcholine and inhibitor concentrations, in order to assess which active (nondesensitized) receptor forms bind noncompetitive inhibitors. The degree of inhibition of JA by the inhibitors studied (cocaine, procaine, and phencyclidine) was found to be independent of acetylcholine concentration. The results are consistent with a mechanism in which each compound inhibits by binding to a single site that exists with equal affinity on all active receptor forms. Mechanisms in which the inhibitors bind exclusively to the open-channel form of the receptor are excluded by the data. The same conclusions were reached in cocaine experiments at 0-mV and procaine experiments at -25-mV transmembrane voltage in T. californica vesicles. It had been previously shown that phencyclidine, in addition to decreasing JA (by binding to active receptors), also increases the rate of rapid receptor inactivation (desensitization) and changes the equilibrium between active and inactive receptors (by binding better to inactivated receptor than to active receptor in the closed or open conformations). These effects were not observed with cocaine or procaine. Here it is shown that despite these differential effects on inactivation, cocaine and phencyclidine bind to the same inhibitory site on active receptors (in E. electricus vesicles).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The nicotinic acetylcholine receptor (AChR) of human skeletal muscle has a reducible disulfide bond near the neurotransmitter binding site in each of its alpha-subunits. By testing a panel of overlapping synthetic peptides encompassing the alpha-subunit segment 177-208 (containing cysteines 192 and 193) we found that specific binding of 125I-labelled alpha-bungarotoxin (alpha-BTx) was maximal in the region 185-199. Binding was inhibited by unlabelled alpha-BTx greater than d-tubocurarine greater than atropine greater than carbamylcholine. Peptide 193-208 did not bind alpha-BTx, whereas 177-192 retained 40% binding activity. Peptides corresponding to regions 125-147 (containing cysteines 128 and 142) and 389-409, or peptides unrelated to sequences of the AChR failed to bind alpha-BTx. No peptide bound 125I-alpha-labelled parathyroid hormone. The apparent affinity (KD) of alpha-BTx binding to immobilized peptides 181-199 and 185-199 was approximately 25 microM and 80 microM, respectively, in comparison with alpha-BTx binding to native Torpedo ACh receptor (apparent KD approximately 0.5 nM). In solution phase, both peptides effectively competed with solubilized native human AChR for binding of alpha-BTx, and peptide 185-199 showed little evidence of dissociation after 24 h. Peptides that bound alpha-BTx did so when sulfhydryls were reduced. Cysteine modification, by N-ethylmaleimide or acetamidomethylation, abolished alpha-BTx-binding activity. The data implicate the region of cysteines 192 and 193 in the binding of neurotransmitter to the human receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号