首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cell-free translation of polyadenylic acid-selected, denatured virion 70S RNA of the Schmidt-Ruppin strain of Rous sarcoma virus (subgroup A) yields a 64,000-Mr polypeptide which is specifically immunoprecipitated by a group-specific serum raised against envelope glycoprotein gp85. This polypeptide is not synthesized from the virion RNA of the replication-defective mutant rdNY8SR-A, which contains an extensive deletion within the envelope (env) gene. From this genetic evidence we conclude that the 64,000-Mr polypeptide represents the nonglycosylated product of the env gene and propose the designation of P64env. The 64,000-Mr polypeptide is translated from a 26S to 28S polyadenylated RNA species, whereas the p60src product is synthesized from a 20S to 22S RNA, and both Pr76gag and P180gag-pol are synthesized predominately from 34S RNA. The product of the env gene of Rous-associated virus-2 was also identified by cell-free translation.  相似文献   

3.
P Besmer  H Fan  M Paskind    D Baltimore 《Journal of virology》1979,29(3):1023-1034
A culture of mouse cells containing a 1,000-nucleotide deletion mutant of Moloney murine leukemia virus has been isolated. The deletion did not affect the size or function of the 21S mRNA that encodes the env gene products. Both the deleted RNA and the 21S mRNA were recovered in polyribosomes. Cells containing the deleted virus made no detectable Pr180gag-pol. Pr65gag synthesis with also absent, but a 45,000-molecular-weight gag gene product was found that might be encoded by the deleted genome. Biosynthesis of Pr80env proceeded normally in these cells; the intracellular precursor was cleaved and migrated to the cell surface as gp70. The cells could not be superinfected by homologous Moloney murine leukemia virus presumably because of surface restriction due to the gp70. Although the cells express the Moloney murine leukemia virus gp70 on their surface, they will not make pseudotypes after infection with vesicular stomatitis virus implying that Pr65gag may play a critical role in pseudotype formation. Induction of endogenous virus expression in the cells carrying the deletion mutant generated an N-tropic murine leukemia virus that can fuse XC cells. This may represent a recombinant between the deletion mutant and an endogenous virus.  相似文献   

4.
The Abelson leukemia virus (AbLV) polyprotein P120 is compared to translational products representing the entire Moloney murine leukemia virus (MuLV) genome on the basis of [35S]methionine tryptic peptide composition. Three methionine-containing tryptic peptides present in Moloney Pr65gag are each shown to be present in both Pr75gag and in Pr180gag-pol. Of these, one peptide, corresponding to Moloney MuLV p12, but neither of two p30-specific peptides are present in AbLV P120. Among the 12 remaining methionine-containing peptides present in AbLV P120, many, if not all, are unique to AbLV P120 and not shared by either Moloney MuLV Pr180gag-pol or Pr82gag.  相似文献   

5.
A glycosylated 45,000-Mr protein containing Rauscher murine leukemia virus p15 and p12 antigenic sites and tryptic peptides was identified in Rauscher murine leukemia virus-infected cells. This glycoprotein, termed gP45gag, was also shown to contain a single tryptic peptide also present in gPr80gag and its unglycosylated apoprotein precursor Pr75gag, but lacking in Pr65gag or Pr40gag. The presence of this peptide only in viral precursor proteins containing the so-called leader (L) sequence strongly suggests that gPr45gag is an N-terminal fragment of larger glycosylated gag polyproteins, composed of L sequences in addition to p15 and p12. The kinetics of appearance of radiolabeled gPr45gag and its disappearance during chase-incubation is suggestive of a precursor-like role for this intermediate gene product. An observed 27,000-Mr glycosylated polypeptide, termed gP27gag and containing p15 but not p12, p30, or p10 antigenic determinants, is a candidate cleavage product derived from gPr45gag. These observations suggest that gPr45gag and its putative cleavage product gP27gag represent an authentic pathway for intracellular processing of glycosylated core proteins.  相似文献   

6.
A novel messenger activity has been identified by in vitro translation of the 70S virion RNAs of a variety of avian leukosis and avian sarcoma viruses. When the 70S virion RNA complex was heat dissociated and the polyadenylated RNA was fractionated on neutral sucrose gradients, a polypeptide of 34,000 daltons (34K) was observed in the translation products of 18S polyadenylic acid-containing virion RNA. Aside from the p60(src)-related subgenomic messenger activities, this was the only prominent messenger activity that sedimented at <20S. It was determined that the 34K protein was not virally coded because (i) messenger activity for the 34K protein was not generated by mild alkaline hydrolysis of 35S genomic RNA, (ii) the 34K proteins synthesized in response to different virion RNAs had identical tryptic peptide maps, and (iii) the tryptic peptide map of the 34K protein coded for by virion RNA was identical to that of a major in vitro translation product of 34,000 daltons made from 18S uninfected chick cell polyadenylated RNA. The 18S RNA was shown to be contained within virion particles, rather than part of a cellular structure copurifying with virus preparations, by demonstrating the presence of 34K messenger activity in virion cores made from detergent-disrupted virus. This cellular mRNA, however, was not observed in the virion RNAs of Rous-associated virus types 0 and 2 avian leukosis viruses and therefore is not packaged by all avian retroviruses. Since no other cellular message has been detected by this assay, it seems likely that the 34K mRNA found in 70S virion RNA is the result of selective packaging of an abundant host cell mRNA by certain avian retroviruses.  相似文献   

7.
We isolated polyadenylated RNA from the cytoplasm of cells infected with Autographa californica nuclear polyhedrosis virus late after infection (21 h postinfection). At that time intracellular protein synthesis was directed almost exclusively toward infected cell-specific proteins. The polyadenylic acid-containing RNA sequences in the cytoplasm at 21 h postinfection were radiolabeled in vitro and hybridized to A. californica nuclear polyhedrosis virus DNA restriction fragments. The polyadenylic acid-containing RNA was derived from regions representing the entire viral genome. Translation in a reticulocyte cell-free protein-synthesizing system of cytoplasmic RNA selected by hybridization to viral DNA and polyadenylic acid-containing RNA produced almost identical polypeptide patterns, suggesting that late after infection almost all of the cytoplasmic polyadenylic acid-containing RNA present in infected cells was of viral origin. Polyhedrin protein (molecular weight, 33,000) and a number of virion structural proteins were among the translation products which were identified by immunoprecipitation and by comparing molecular weights. In addition, some tentative nonstructural infected cell-specific proteins were also detected. Using the hybridization selection technique, we determined that sequences complementary to the message coding for polyhedrin were located on EcoRI fragment I of A. californica nuclear polyhedrosis virus DNA, whereas sequences coding for a putative nonstructural protein (molecular weight, 39,000) were on EcoRI fragment J.  相似文献   

8.
The structural relationships among the gag polyproteins Pr65gag, Pr75gag, and gPr80gag of Rauscher murine leukemia virus were studied by endoglycosidase H digestion and formic acid cleavage. Fragments were identified by precipitation with specific antisera to constituent virion structural proteins followed by one-dimensional mapping. Endoglycosidase H reduced the size of gPr80gag to that of Pr75gag. By comparing fragments of gPr80gag and the apoprotein Pr75gag, the former was shown to contain two mannose-rich oligosaccharide units. By comparing fragments of Pr65gag and Pr75gag, the latter was shown to differ from Pr65gag at the amino terminus by the presence of a leader peptide approximately 7,000 daltons in size. The internal and carboxyl-terminal peptides of the two unglycosylated polyproteins were not detectably different. The location of the two N-linked carbohydrate chains in gPr80gag has been specified. One occurs in the carboxyl-terminal half of the polyprotein at asparagine177 of the p30 sequence and the other is found in a 23,000-dalton fragment located in the amino-terminal region of gPr80gag and containing the additional amino acid sequences not found in Pr65gag plus a substantial portion of p15.  相似文献   

9.
10.
11.
Cytoplasmic virus-specific RNA and polyribosomes from a chronically infected feline thymus tumor cell line, F-422, were analyzed by using in vitro-synthesized feline leukemia virus (Rickard strain) (R-FeLV) complementary DNA (cDNA) probe. By hybridization kinetics analysis, cytoplasmic, polyribosomat, and nuclear RNAs were found to be 2.1, 2.6, and 0.7% virus specific, respectively. Size classes within subcellular fractions were determined by sucrose gradient centrifugation in the presence of dimethyl sulfoxide followed by hybridization. The cytoplasmic fraction contained a 28S size class, which corresponds to the size of virion subunit RNA, and 36S, 23S, and 15 to 18S RNA species. The virus-specific 36S, 23S, and 15 to 18S species but not the 28S RNA were present in both the total and polyadenylic acid-containing polyribosomal RNA. Anti-FeLV gamma globulin bound to rapidly sedimenting polyribosomes, with the peak binding at 400S. The specificity of the binding for nascent virus-specific protein was determined in control experiments that involved mixing polyribosomes with soluble virion proteins, absorption of specific gamma globulin with soluble virion proteins, and puromycin-induced nascent protein release. The R-FeLV cDNA probe hybridized to RNA in two polyribosomal regions (approximately 400 to 450S and 250S) within the polyribosomal gradients before but not after EDTA treatment. The 400 to 450S polyribosomes contained three major peaks of virus-specific RNA at 36S, 23S, and 15 to 18S, whereas the 250S polyribosomes contained predominantly 36S and 15 to 18S RNA. Further experiments suggest that an approximately 36S minor subunit is present in virion RNA.  相似文献   

12.
The protein-coding capacity of the mouse mammary tumor virus genome has been examined by in vitro translation of genome length and polyadenylated subgenomic fragments of viral RNA. Intact genome RNA of about 35S programmed synthesis of the Pr77gag, Pr110gag and Pr160gag/pol precursors seen in infected cells in vivo. Polyadenylated RNA fragments of 18 to 28S encoded products whose tryptic peptide maps resembled those of the nonglycosylated precursor to the envelope glycoproteins, confirming the gene order 5'-gag-pol-env-3'. Translation of polyadenylated RNA fragments smaller than 18S yielded a series of related proteins whose peptide maps bore no resemblance to any of the virion structural proteins. Thus, a region of the mouse mammary tumor virus genome distal to the env gene appears to have an open reading frame sufficient to encode at least 36,000 daltons of protein as of yet unknown function.  相似文献   

13.
The polyribosomal fraction from chicken embryo fibroblasts infected with B77 avian sarcoma virus contained 38S, 28S, and 21S virus-specific RNAs in which sequences identical to the 5'-terminal 101 bases of the 38S genome RNA were present. The only polyadenylic acid-containing RNA species with 5' sequences which was detectable in purified virions had a sedimentation coefficient of 38S. This evidence is consistent with the hypothesis that a leader sequence derived from the 5' terminus of the RNA is spliced to the bodies of the 28S and 21S mRNA's, both of which have been shown previously to be derived from the 3' terminal half of the 38S RNA. The entire 101-base 5' terminal sequence of the genome RNA appeared to be present in the majority of the subgenomic intracellular virus-specific mRNA's, as established by several different methods. First, the extent of hybridization of DNA complementary to the 5'-terminal 101 bases of the genome to polyadenylic acid-containing subgenomic RNA was similar to the extent of its hybridization to 38S RNA from infected cells and from purified virions. Second, the fraction of the total cellular polyadenylic acid-containing RNA with 5' sequences was similar to the fraction of RNA containing sequences identical to the extreme 3' terminus of the genome RNA when calculated by the rate of hybridization of the appropriate complementary DNA probes. This suggests that most intracellular virus-specific RNA molecules contain sequences identical to those present in the 5'-terminal 101 bases of the genome. Third, the size of most of the radioactively labeled DNA complementary to the 5'-terminal 101 bases of the genome remained unchanged after the probe was annealed to either intracellular 38S RNA or to various size classes of subgenomic RNA and the hybrids were digested with S1 nuclease and denatured with alkali. However, after this procedure some DNA fragments of lower molecular weight were present. This was not the case when the DNA complementary to the 5'-terminal 101 bases of the genome was annealed to 38S genome RNA. These results suggest that, although the majority of the intracellular RNA contains the entire 101-base 5'-terminal leader sequence, a small population of virus-specific RNAs exist that contain either a shortened 5' leader sequence or additional splicing in the terminal 101 bases.  相似文献   

14.
Murine leukemia virus (MuLV) codes for two precursors of the group-specific antigens, Pr65gag and Pr75gag, in vivo. While Pr65gag is the precursor to the virion structural proteins, Pr75gag undergoes glycosylation and is found on the surface of the infected cell as gp85gag, and it is thought to play a role in virus maturation and spread. Pr65gag synthesis starts at an AUG codon within a favourable initiation context (AAUAUGG at positions 618 to 624). The gp85gag start codon is upstream but its precise location is not known. To map the initiation codon of gp85gag, we used deletion and site-directed mutagenesis of the leader sequence of MuLV RNA and in vitro translation of the RNAs. Synthesis of the MuLV gp85gag protein appears to be initiated at a CUG codon located within a favourable context (ACCCUGG at positions 354 to 359 for Moloney-MuLV). The possible function of gp85gag was investigated by expressing Moloney-MuLV and Friend-MuLV proviral DNA and mutants deficient for gp85gag synthesis in mouse and rat cells. The results indicate that the gp85gag protein probably facilitates the spread of virus infection in tissue culture.  相似文献   

15.
M Ruta  M J Murray  M C Webb  D Kabat 《Cell》1979,16(1):77-88
Cells infected with a temperature-sensitive mutant (ts-26) of Rauscher murine leukemia virus (R-MuLV) or with wild-type virus were labeled with 35S-methionine, and cell extracts were examined for radioactive polypeptides which could be precipitated by monospecific antisera to viral proteins. When shifted from permissive (31 degrees C) to nonpermissive (39 degrees C) temperature, cells infected with ts-26 rapidly begin to accumulate gPr90enr, the glycoprotein precursor to the membrane envelope glycoprotein gp70 and to the membrane-associated protein p15E. Simultaneously, formation of these mature virion proteins ceases. In addition, lactoperoxidase-catalyzed surface labeling with 125I--iodine indicates that the plasma membrane of cells infected with ts-26 becomes depleted of gp70 antigens at 39 degrees C. Nevertheless, at 39 degrees C these cells release defective MuLVs which lack gp70 and p15E but contain an outer membrane. The released particles also contain an aberrantly processed form of the major virion core protein p30, and many of these virion cores have an unusual immature crescent shape. It has previously been reported that cells infected with the ts-26 mutant of R-MuLV process a 65,000 dalton precursor (Pr65gag) of the virion core proteins more slowly at 39 degrees C than do cells infected with wild-type virus (Stephenson, Tronick and Aaronson, 1975). Although we have confirmed these results, this effect is relatively small and it is known that various alterations of MuLV assembly can lead secondarily to inhibited processing of Pr65gag. We propose that the ts-26 mutant has a primary temperature-sensitive defect in membrane glycoprotein synthesis and that this change causes pleiotropic effects on core morphogenesis.  相似文献   

16.
Polyproteins encoded by several independent isolates of feline sarcoma virus (FeSV) were analyzed with respect to molecular weight, extent of phosphorylation, and tryptic peptide composition. As previously reported, cells nonproductively transformed by the Gardner strain of FeSV express a polyprotein which has a molecular weight of approximately 115,000 and contains feline leukemia virus p15, p12, and minor portion of p30. In addition, a major 72,000-dalton possible cleavage product can be identified. Snyder-Theilen FeSV-transformed cells express a major polyprotein of approximately 115,000 daltons and a second highly related 80,000-dalton protein. The p12 structural component of Gardner FeSV P115, but not Snyder-Theilen FeSV 115, corresponds to feline leukemia virus subgroup A with respect to immunological type specificity, a finding consistent with the independent origin of these viruses. Tryptic peptide analysis revealed five methionine-containing peptides specific to the nonstructural portion of Gardner FeSV 115, three of which were also represented in Snyder-Theilen FeSV P115, three of which were also represented in Snyder-Theilen FeSV P115. None of these [35S]methionine-labeled tryptic peptides were present in translational products representative of the complete feline leukemia virus subgroup A genome, including Pr180gag-pol, Pr65gag, and Pr82env. Similarly phosphorylated tryptic peptides within the structural (p12) and nonstructural components of Gardner FeSV P115 and Snyder-Theilen FeSV P115 Are highly related. These findings support the possibility that acquired sequences of two independently derived isolates of FeSV encode structurally related proteins.  相似文献   

17.
Both glycosylated and unglycosylated polyproteins coded by the gag gene are produced in cells infected with Moloney murine leukemia virus. GpP80gag is a glycosylated precursor of a larger gag glycoprotein exported to the cell surface, whereas Pr65gag is an unglycosylated precursor of the virion internal structural proteins. GpP80gag contains not only carbohydrate, but also additional polypeptide sequences not found in Pr65gag. In the experiment reported here, we localized the differences between GpP80gag and Pr65gag with respect to the domains of the individual gag proteins. This was done by comparison of partial proteolytic cleavage fragments from Pr65gag, from GpP80gag, and from the unglycosylated form of GpP80gag (P75gag) which had been immunoprecipitated by antisera specific for gag proteins p30, p15, and p10. We conclude that the additional polypeptide sequences in GpP80gag are located at or very near the amino terminus of the polyprotein. The carbohydrate in GpP80gag is attached to polypeptide sequences held in common between GpP80gag and Pr65gag.  相似文献   

18.
A proteolytic activity is associated with structural protein p15 in avian RNA tumor viruses. Its effect on the known intracellular viral polyprotein precursors obtained by immunoprecipitation was investigated. Cleavage of Pr76gag resulted in the sequential appearance of p15, p27, and p19. The intracellular precursor Pr180gag-pol was also cleaved by p15, whereas the intracellular glycoprotein precursors of avian RNA tumor viruses, Pr92env, remained unaffected by p15 under all conditions tested. The specificities of the antibodies used to precipitate the precursors influenced the pattern of intermediates and cleavage products obtained by p15 treatment. If virus harvested from the the Prague strain of Rous sarcoma virus, subgroup C-transformed cells at 15-min intervals was incubated at 37 degrees C for further maturation, RNA-dependent DNA polymerase activity showed an optimum of DNA synthesis with 70S viral RNA or synthetic template-primers after short incubation periods. The presence of additional p15 during incubation resulted in a shift of the enzyme activity peak toward earlier time points. Virus harvested at 3-h intervals contained significant amounts of Pr180gag-pol and Pr76gag. The addition of p15 resulted in the cleavage of Pr180gag-pol and Pr76gag, but only a few distinct low-molecular-weight polypeptides appeared. Treatment of purified RNA-dependent DNA polymerase with p15 in vitro resulted in a disappearance of the beta subunit and an enrichment of the alpha subunit. In addition, a polypeptide of 32 x 10(3) molecular weight was generated. The cleavage pattern observed differed from the one obtained by trypsin treatment.  相似文献   

19.
Mouse mammary tumor virus (MMTV) derived from the culture medium of GR cells contained seven proteins, identified as gp55, gp33, p25, pp20, p16, p12, and p10. The major viral phosphoprotein was the 20,000-molecular-weight protein, pp20. Immunoprecipitation of cytoplasmic extracts from pulse-labeled GR cells identified three MMTV gag-specific proteins, termed Pr78(gag), Pr110(gag), and Pr180(gag+). These intracellular polyproteins were precipitable from cytoplasmic extracts by antisera to virions p25 and p12 but not by antisera to gp55. The major intracellular gag-specific precursor polyprotein, Pr78(gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, p10, and presumably pp20. This precursor is presumably derived from nascent chain cleavage or rapid posttranslational cleavage of the larger intracellular precursor-like protein, designated Pr110(gag). Pr110(gag) contained all but one of the leucine-containing tryptic peptides of Pr78(gag), plus several additional peptides. In addition to Pr78(gag) and Pr110(gag), monospecific antisera to virion p12 and p25 were also capable of precipitating from pulse-labeled cells a small amount of a 180,000-molecular-weight precursor-like protein, designated Pr180(gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78(gag) and Pr110(gag) plus several additional peptides. By analogy to type C viral systems, Pr180(gag+) is presumed to represent a gag-pol common precursor which is the major pathway for synthesis of MMTV polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two env-specific proteins, designated gPr76(env) and gP79(env). The major env precursor, gPr76(env), could be labeled with radioactive glucosamine and was shown to contain antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A minor glycoprotein, gP79(env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79(env) represents fucosylated gPr76(env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.  相似文献   

20.
A purified 15,000-molecular-weight (Mr) Prague strain Rous sarcoma virus gag gene-coded structural protein, p15, was shown to enzymatically cleave the previously described 130,000 Mr feline sarcoma virus-coded polyprotein, Pr130. Cleavage products included proteins ranging in molecular weight from 12,000 to 110,000. The specificity of this cleavage reactivity was indicated by the fact that, under similar conditions, neither purified type C viral structural proteins nor nonviral proteins such as bovine serum albumin were cleaved to significant extents. Moreover, feline leukemia virus Pr65gag was efficiently cleaved, resulting in the generations of proteins of 30,000 (p30), 15,000 (p15), 12,000 (p12), and 10,000 (p10) Mr. Using enzymatically (p15) treated feline sarcoma virus Pr130 as starting material, we were able to purify a major 72,000 Mr cleavage product and to show it to contain the previously described feline sarcoma virus-coded nonstructural component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号