首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the synthesis of extracellular metabolic products generated by sulfate-reducing bacteriaDesulfovibrio desulfuricans grown on a lactate-containing mineral medium in the presence of H2 and CO2 at various volume ratios in the gaseous phase were studied. An increase in the amount of extracellular products synthesized by the bacteria was observed at an H2/CO2 ratio of 3 : 1. High concentrations of molecular hydrogen (80–95%) in the presence of 5–20% CO2 facilitated the synthesis of hydrocarbons (alkanes) whose highest concentrations were produced at an H2/CO2 ratio of 9:1. An increase in the initial CO2 concentration in the gaseous phase above 20% increased the amount of oxygenated compounds in the culture.  相似文献   

2.
In isolated perfused rat liver, urea synthesis from ammonium ions was dependent on extracellular HCO3- and CO2 concentrations when the HCO3-/CO2 ratio in the influent perfusate was constant (pH 7.4). Urea synthesis was half-maximal at HCO3- = 4 mM, CO2 = 0.19 mM and was maximal at HCO3- and CO2 concentrations above 20 mM and 0.96 mM, respectively. At physiological HCO3- (25 mM) and CO2 (1.2 mM) concentrations in the influent perfusate, acetazolamide, the inhibitor of carbonic anhydrase, inhibited urea synthesis from ammonium ions (1 mM) by 50-60% and led to a 70% decrease in citrulline tissue levels. Acetazolamide concentrations required for maximal inhibition of urea synthesis were 0.01-0.1 mM. At subphysiological HCO3- and CO2 concentrations, inhibition of urea synthesis by acetazolamide was increased up to 90%. Inhibition of urea synthesis by acetazolamide was fully overcome in the presence of unphysiologically high HCO3- and CO2 concentrations, indicating that the inhibitory effect of acetazolamide is due to an inhibition of carbonic-anhydrase-catalyzed HCO3- supply for carbamoyl-phosphate synthetase, which can be bypassed when the uncatalyzed intramitochondrial HCO3- formation from portal CO2 is stimulated in the presence of high portal CO2 concentrations. With respect to HCO3- supply of mitochondrial carbamoyl-phosphate synthetase, urea synthesis can be separated into a carbonic-anhydrase-dependent (sensitive to acetazolamide at 0.5 mM) and a carbonic-anhydrase-independent (insensitive to acetazolamide) portion. Carbonic-anhydrase-independent urea synthesis linearly increased with the portal 'total CO2 addition' (which was experimentally determined to be CO2 addition plus 0.036 HCO3- addition) and was independent of the perfusate pH. At a constant 'total CO2 addition', carbonic-anhydrase-dependent urea synthesis was strongly affected by perfusate pH and increased about threefold when the perfusate pH was raised from 6.9 to 7.8. It is concluded that the pH dependent regulation of urea synthesis is predominantly due to mitochondrial carbonic anhydrase-catalyzed HCO3- supply for carbamoyl phosphate synthesis, whereas there is no control of urea synthesis by pH at the level of the five enzymes of the urea cycle. Because HCO3- provision for carbamoyl phosphate synthetase increases with increasing portal CO2 concentrations even in the absence of carbonic anhydrase activity, susceptibility of ureogenesis to pH decreases with increasing portal CO2 concentrations. This may explain the different response of urea synthesis to chronic metabolic and chronic respiratory acidosis in vivo.  相似文献   

3.
Quantitative aspects of de novo pyrimidine biosynthesis in rat hepatocytes were monitored. A reduction of intracellular UTP contents by different concentrations of D-galactosamine led to a dose-dependent increase of 14CO2 incorporation into the sum of all acid-soluble uracil nucleotides. In controls the rate of de novo synthesis which was calculated from the incorporation rate of 14CO2 into the sum of all acid-soluble uracil nucleotides was 0.014 mumol X h-1 X g-1 compared to 0.056 mumol X h-1 X g-1 wet weight of liver in situations of a maximally stimulated de novo synthesis. Incubation of hepatocytes with uridine led to a dose-dependent reduction of 14CO2 incorporation to less than 25% of the amount incorporated in the controls. Alterations of the CTP content had no influence on the 14CO2 incorporation. In the presence of high D-galactosamine concentrations the increase of the total amount of acid-soluble uracil nucleotides exceeded the rate of the de novo synthesis derived from the incorporation of 14CO2 into the sum of the acid-soluble uracil nucleotide pool. It was also greater than the increase of the total amount of intra- and extracellular orotate after acidic hydrolysis--even in the presence of 6-azauridine, which stimulated de novo pyrimidine biosynthesis by itself.  相似文献   

4.
1. Hepatocytes from starved rats were incubated with 5mm-glucose, labelled uniformly with (14)C and specifically with (3)H at positions 1, 2, 3 or 6, and with fructose at concentrations of 2.5, 7.5 or 25mm. 2. In the absence of other substrates only 1% of the radioactivity initially present in [U-(14)C]glucose appeared in the metabolic products, CO(2), lactate, pyruvate, amino acids and glycogen. 3. Fructose at 2.5mm caused a 30% increase in the glucose concentration and a 4-fold increase in the apparent oxidation of [U-(14)C]-glucose. 4. The formation of (3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose was 2.4, 4.3, 2.15 or 1.6% respectively in the control incubations and 4.1, 10.4, 7.7 or 5.1% with 2.5mm-fructose. 5. Fructose at 7.5 and 25mm decreased the (3)H(2)O yields to less than the control values, but had no apparent effect on the amount of [U-(14)C]glucose metabolized. 6. In the incubations with 5mm-glucose and 25mm-fructose there were significant decreases in heat production, O(2) consumption and in the ratio of O(2) uptake to heat output. 7. Fructose at 2.5mm caused a 64% increase in heat output, but only a 43% increase in O(2) uptake. 8. The radioisotopic and calorimetric data demonstrate that physiological concentrations of fructose greatly increase metabolism in hepatocytes from starved rats. These data also indicate increased cycling at glucose/glucose 6-phosphate and at fructose 6-phosphate/fructose 1,6-bisphosphate in the presence of 2.5mm-fructose, although the rates of cycling were actually decreased relative to the amount of glucose catabolized. 9. At concentrations of 2.5, 7.5 and 25mm, fructose depressed hepatocyte ATP concentrations by 20, 65 and 80% respectively. Although fructose at 7.5 and 25mm increased glucose and lactate release, O(2) consumption, production of heat and formation of(3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose were lowered to values equal to, or less than, controls. These effects probably reflect a severe derangement of hepatic metabolism due to excess phosphorylation of fructose when present at high concentrations.  相似文献   

5.
The effects of ruminal concentrations of CO2 and O2 on glucose-stimulated and endogenous fermentation of the rumen isotrichid ciliate Dasytricha ruminantium were investigated. Principal metabolic products were lactic, butyric and acetic acids, H2 and CO2. Traces of propionic acid were also detected; formic acid present in the incubation supernatants was found to be a fermentation product of the bacteria closely associated with this rumen ciliate. 13C NMR spectroscopy revealed alanine as a minor product of glucose fermentation by D. ruminantium. Glucose uptake and metabolite formation rates were influenced by the headspace gas composition during the protozoal incubations. The uptake of exogenously supplied D-glucose was most rapid in the presence of O2 concentrations typical of those detected in situ (i.e. 1-3 microM). A typical ruminal gas composition (high CO2, low O2) led to increased butyrate and acetate formation compared to results obtained using O2-free N2. At a partial pressure of 66 kPa CO2 in N2, increased cytosolic flux to butyrate was observed. At low O2 concentrations (1-3 microM dissolved in the protozoal suspension) in the absence of CO2, increased acetate and CO2 formation were observed and D. ruminantium utilized lactate in the absence of extracellular glucose. The presence of both O2 and CO2 in the incubation headspaces resulted in partial inhibition of H2 production by D. ruminantium. Results suggest that at the O2 and CO2 concentrations that prevail in situ, the contribution made by D. ruminantium to the formation of ruminal volatile fatty acids is greater than previously reported, as earlier measurements were made under anaerobic conditions.  相似文献   

6.
With physiological portal HCO3- and CO2 concentrations of 25mM and 1.2mM in the perfusate, respectively, acetazolamide inhibited urea synthesis from NH4Cl in isolated perfused rat liver by 50-60%, whereas urea synthesis from glutamine was inhibited by only 10-15%. A decreased sensitivity of urea synthesis from glutamine to acetazolamide inhibition was also observed when the extracellular HCO3- and CO2 concentrations were varied from 0-50mM and 0-2.4mM, respectively. Stimulation of intramitochondrial CO2 formation at pyruvate dehydrogenase with high pyruvate concentrations (7mM) was without effect on the acetazolamide sensitivity of urea synthesis from NH4Cl. Urea synthesis was studied under conditions of a limiting HCO3- supply for carbamoyl-phosphate synthesis. In the absence of externally added HCO3- or CO2, when 14CO2 was provided intracellularly by [U-14C]glutamine or [1-14C]-glutamine oxidation, acetazolamide had almost no effect on label incorporation into urea, whereas label incorporation from an added tracer H14CO3- dose was inhibited by about 70%. 14CO2 production from [U-14C]glutamine was about twice as high as from [1-14C]glutamine, indicating that about 50% of the CO2 produced from glutamine is formed at 2-oxoglutarate dehydrogenase. The fractional incorporation of 14CO2 into urea was about 13% with [1-14C]-as well as with [U-14C]glutamine. Addition of small concentrations of HCO3- (1.2mM) to the perfusate increased urea synthesis from glutamine by about 70%. This stimulation of urea synthesis was fully abolished by acetazolamide. The carbonate-dehydratase inhibitor prevented the incorporation of added HCO3- into urea, whereas incorporation of CO2 derived from glutamine degradation was unaffected. Without HCO3- and CO2 in the perfusion medium, when 14CO2 was provided by [1-14C]-pyruvate oxidation, acetazolamide inhibited urea synthesis from NH4Cl as well as 14C incorporation into urea by about 50%. Therefore carbonate-dehydratase activity is required for the utilization of extracellular CO2 or pyruvate-dehydrogenase-derived CO2 for urea synthesis, but not for CO2 derived from glutamine oxidation. This is further evidence for a special role of glutamine as substrate for urea synthesis.  相似文献   

7.
Hepatocyte heterogeneity in response to extracellular ATP   总被引:4,自引:0,他引:4  
1. The metabolic and hemodynamic effects of extracellular ATP in perfused rat liver were compared during physiologically antegrade (portal to hepatic vein) and retrograde (hepatic to portal vein) perfusion. ATP in concentrations up to 100 microM was completely hydrolyzed during a single liver passage regardless of the perfusion direction. 2. The ATP(20 microM)-induced increases of glucose output, perfusion pressure and ammonium ion release seen during antegrade perfusions were diminished by 85-95% when the perfusion was in the retrograde direction, whereas the amount of Ca2+ mobilized from the liver was decreased by only 60%. The maximal rate of initial K+ uptake following ATP was dependent on the amount of Ca2+ mobilized regardless of the direction of perfusion. In the presence of UMP (1 mM), an inhibitor of ATP hydrolysis by membrane-bound nucleotide pyrophosphatase, the effect of the direction of perfusion on the glycogenolytic response to ATP (20 microM) was largely diminished. 3. For a maximal response of glucose output, Ca2+ release and perfusion pressure to extracellular ATP, concentrations of about 20 microM, 50 microM and 100 microM were required during antegrade perfusion, respectively. These maximal responses could also be obtained during retrograde perfusion, but higher ATP concentrations were required (120 microM, 80 microM, above 200 microM, respectively). 4. 14CO2 production from [1-14C]glutamate which occurs predominantly in the perivenous hepatocytes capable of glutamine synthesis was stimulated by extracellular ATP (20 microM); it was only slightly affected by the direction of perfusion. In antegrade perfusions, ATP (20 microM) increased 14CO2 production from 88 to 162 nmol g-1 min-1, compared to an increase from 91 to 148 nmol g-1 min-1 in retrograde perfusion. 5. The data are interpreted to suggest that (a) extracellular ATP is predominantly hydrolyzed by a small hepatocyte population located at the perivenous outflow of the acinus; (b) glycogenolysis to glucose is predominantly localized in the periportal area; (c) contractile elements (sphincters) exist near the inflow of the sinusoidal bed; (d) a considerable portion of the Ca2+ mobilized by ATP is derived from liver cells that do not contribute to hepatic glucose output.  相似文献   

8.
A Klebsiella sp. HE1 strain isolated from hydrogen-producing sewage sludge was examined for its ability to produce H(2) and other valuable soluble metabolites (e.g., ethanol and 2,3-butanediol) from sucrose-based medium. The effect of pH and carbon substrate concentration on the production of soluble and gaseous products was investigated. The major soluble metabolite produced from Klebsiella sp. HE1 was 2,3-butanediol, accounting for over 42-58% of soluble microbial products (SMP) and its production efficiency enhanced after increasing the initial culture pH to 7.3 (without pH control). The HE1 strain also produced ethanol (contributing to 29-42% of total SMP) and a small amount of lactic acid and acetic acid. The gaseous products consisted of H(2) (25-36%) and CO(2) (64-75%). The optimal cumulative hydrogen production (2.7 l) and hydrogen yield (0.92molH(2)molsucrose(-1)) were obtained at an initial sucrose concentration of 30gCODl(-1) (i.e., 26.7gl(-1)), which also led to the highest production rate for H(2) (3.26mmolh(-1)l(-1)), ethanol (6.75mmolh(-1)l(-1)) and 2,3-butanediol (7.14mmolh(-1)l(-1)). The highest yield for H(2), ethanol and 2,3-butanediol was 0.92, 0.81 and 0.59molmol-sucrose(-1), respectively. As for the overall energy production performance, the highest energy generation rate was 27.7kJh(-1)l(-1) and the best energy yield was 2.45kJmolsucrose(-1), which was obtained at a sucrose concentration of 30 and 20gCODl(-1), respectively.  相似文献   

9.
Bacterial strains from human feces that reduce CO2 to acetic acid.   总被引:2,自引:2,他引:0       下载免费PDF全文
We used dilutions of fecal suspensions from a human volunteer to enrich cultures for bacteria that reduce CO2 to acetate in the colon. The soluble enrichment substrates used were glucose, methanol, formate, and vanillate, which were used with a gas phase that contained 80% N2 and 20% CO2. The gaseous enrichment substrates used were 80% H2-20% CO2 and 50% CO-50% CO2. We isolated three different strains that produced acetate from CO2. One strain produced acetate from methanol, vanillate, H2-CO2, glucose, and other sugars. The other two strains did not form acetate from methanol or vanillate. Both of the latter strains formed acetate from glucose and other sugars, but only one of these strains formed acetate from H2-CO2. Both of these strains cometabolized formate. However, none of the enrichment cultures or pure cultures used CO or formate as a substrate for growth. The two strains that produced acetate from H2 and CO2 grew slowly when the gases alone were used as substrates, but they rapidly cometabolized H2 and CO2 when they were grown with organic substrates. The ability of all of the strains to produce acetate from CO2 and/or other one-carbon precursors was verified by determining the radioactivity of the methyl and carboxyl groups of the acetate formed after growth with 14CO2 or other radioactively labeled one-carbon precursors.  相似文献   

10.
The stoichiometric ratio of O2 evolution to CO2 uptake during photosynthesis reveals information about reductive metabolism, including the reduction of alternative electron acceptors, such as nitrite and oxaloacetate. Recently we reported that in simultaneous measurements of CO2 uptake and O2 evolution in a sunflower leaf, O2 evolution changed by 7% more than CO2 uptake when light intensity was varied. Since the O2/CO2 exchange ratio is approximately 1, small differences are important. Thus, these gas exchange measurements need precise calibration. In this work, we describe a new calibration procedure for such simultaneous measurements, based on the changes of O2 concentration caused by the addition of pure CO2 or O2 into a flow of dry air (20.95% O2) through one and the same capillary. The relative decrease in O2 concentration during the addition of CO2 and the relative increase in O2 concentration during the addition of O2 allowed us to calibrate the CO2 and O2 scales of the measurement system with an error (relative standard deviation, RSD) of <1%. Measurements on a sunflower leaf resulted in an O2/CO2 ratio between 1.0 and 1.03 under different CO2 concentrations and light intensities, in the presence of an ambient O2 concentration of 20-50 micromol mol(-1). This shows that the percentage use of reductive power from photochemistry in synthesis of inorganic or organic matter other than CO2 assimilation in the C3 cycle is very low in mature leaves and, correspondingly, the reduction of alternative acceptors is a weak source of coupled ATP synthesis.  相似文献   

11.
Anaerobic bacteria were enriched with a sewage digestor sludge inoculum and a mineral medium supplemented with B-vitamins and 0.05% yeast extract and with a 50% CO-30% N2-20% CO2 (2 atm [202 kPa]) gas phase. Microscopic observation revealed an abundance of gram-positive cocci, 1.0 by 1.4 micron, which occurred in pairs or chains. The coccus, strain U-1, was isolated by using roll tubes with CO as the energy source. Based on morphology, sugars fermented, fermentation products from glucose (H2, acetate, lactate, and succinate), and other features, strain U-1 was identified as Peptostreptococcus productus IIb (similar to the type strain). The doubling time with up to 50% CO was 1.5 h; acetate and CO2 were the major products. In addition, no significant change in the doubling time was observed with 90% CO. Some stock strains were also able to use CO, although not as well. Strain U-1 produced acetate during growth with H2-CO2. Other C1 compounds did not support growth. Most probable numbers of CO utilizers morphologically identical with strain U-1 were 7.5 X 10(6) and 1.1 X 10(5) cells per g for anaerobic digestor sludge and human feces, respectively.  相似文献   

12.
Anaerobic bacteria were enriched with a sewage digestor sludge inoculum and a mineral medium supplemented with B-vitamins and 0.05% yeast extract and with a 50% CO-30% N2-20% CO2 (2 atm [202 kPa]) gas phase. Microscopic observation revealed an abundance of gram-positive cocci, 1.0 by 1.4 micron, which occurred in pairs or chains. The coccus, strain U-1, was isolated by using roll tubes with CO as the energy source. Based on morphology, sugars fermented, fermentation products from glucose (H2, acetate, lactate, and succinate), and other features, strain U-1 was identified as Peptostreptococcus productus IIb (similar to the type strain). The doubling time with up to 50% CO was 1.5 h; acetate and CO2 were the major products. In addition, no significant change in the doubling time was observed with 90% CO. Some stock strains were also able to use CO, although not as well. Strain U-1 produced acetate during growth with H2-CO2. Other C1 compounds did not support growth. Most probable numbers of CO utilizers morphologically identical with strain U-1 were 7.5 X 10(6) and 1.1 X 10(5) cells per g for anaerobic digestor sludge and human feces, respectively.  相似文献   

13.
The growth and gas exchange of Seliberia carboxydohydrogena Z-1062 were studied in the regime of turbidostat when the conditions of gaseous nutrition were changed: a decrease in hydrogen concentration and an increase in carbon monoxide concentration, growth on two carbon sources (CO+CO2) and on two energy sources (H2+CO). The inhibition of the bacterial growth by CO was expressed in a decrease of the specific growth rate and in the reduced effectiveness of using a gaseous substrate. When the concentration of carbon monoxide was elevated from 0 to 40% and that of hydrogen was reduced from 80 to 40%, the specific growth rate of the cells was decreased from 0.4 to 0.04 h-1; here, the economic coefficient in terms of hydrogen fell from 3.6 to 0.62 g/g. The CO-oxidizing system of the bacterium was shown to be resistant. The rate of CO oxidation by the culture was from 0.6 to 0.8 L/h per 1 g of the synthesized biomass at the following concentration of gases in the medium (%); H2, 80-40; CO2, 5; O2, 15; CO, 10-40. The rate of CO oxidation by the culture rose when hydrogen concentration was decreased and CO concentration was increased.  相似文献   

14.
Water and acetate solutions were irradiated under argon by 300 kHz ultrasonic waves. Oxygen was found to be generated besides the products H2 and H2O2, already known. In the presence of acetate the O2 yield decreased rapidly while that of H2O2 decreased more slowly. Succinic acid was found as a product of the attack of OH radicals on acetate. Appreciable amounts of glyoxylic and glycolic acid and smaller amounts of formaldehyde and carbon dioxide were also detected. They resulted from the reaction of sonolytically generated oxygen with CH2CO2- radicals, produced upon attack of OH on acetate. Methane was a minor product of sonolysis. At acetate concentrations above 0.4 mol dm-3 CO2 and CO became the predominant products of sonolysis. This is explained by a second kind of action of ultrasound on dissolved acetate, i.e. by a thermal decomposition. This decomposition is possibly facilitated by radical attack on acetate. The results are discussed in terms of a 'structured hot spot' model, in which three regions for the occurrence of chemical reactions are postulated: a hot gaseous nucleus, an interfacial region with radial gradient in temperature and local radical density; and the bulk solution at ambient temperature.  相似文献   

15.
The nitrogenase from wild-type Klebsiella pneumoniae reduces cyclopropene to cyclopropane and propene in the ratio 1:2 at pH 7.5. We show in this paper that the nitrogenase from a nifV mutant of K. pneumoniae also reduces cyclopropene to cyclopropane and propene, but the ratio of products is now 1:1.4. However, both nitrogenases exhibit the same Km for cyclopropene (2.1 x 10(4) +/- 0.2 x 10(4) Pa), considerably more than the Km for the analogous reaction with Azotobacter vinelandii nitrogenase under the same conditions (5.1 x 10(3) Pa). Analysis of the data shows that the different product ratio arises from the slower production of propene compared with cyclopropane by the mutant nitrogenase. During turnover, both nitrogenases use a large proportion of the electron flux for H2 production. CO inhibits the reduction of cyclopropene by both K. pneumoniae proteins, but the mutant nitrogenase exhibits 50% inhibition at approx. 10 Pa, whereas the corresponding value for the wild-type nitrogenase is approx. 110 Pa. However, H2 evolution by the mutant enzyme is much less affected than is cyclopropene reduction. CO inhibition of cyclopropene reduction by the nitrogenases coincides with a relative increase in H2 evolution, so that in the wild-type (but not the mutant) the electron flux is approximately maintained. The cyclopropane/propene production ratios are little affected by the presence of CO within the pressure ranges studied at least up to 50% inhibition.  相似文献   

16.
The effects that naturally occurring gases (oxygen, nitrogen, carbon monoxide) may cause in dormant giant foxtail (Setaria faberii) seed germination under favorable temperature and moisture conditions were investigated. The germination responses to gas mixtures supported the hypothesis that S. faberii germination behavior is regulated by the amount of oxygen taken into hydrated seed over time. Setaria faberii seed germination was markedly affected by O(2) concentration (in N(2)) above and below that of air (20% O(2)): the largest increase in germination (from 37 to 60%) occurred between 20-25% O(2); between 0-10% O(2), germination increased from 0-30%; and surprisingly germination at 10 and 20% O(2) was similar. These observations reveal an asymmetrical response to incremental changes in O(2) above and below that typically found in agricultural soils. Carbon monoxide had opposite effects on S. faberii germination in air depending on concentration, stimulation, and inhibition: germination increased from 37 to 56% with the addition of 1% CO, but decreased from 37 to 14% with 75% added CO. An explanation may be that there are two separate effects of CO, each occurring in different physiological systems of dormant seeds at the same time. At high concentrations (75%) in air CO inhibited seed germination, probably by inhibiting mitochondrial respiration. But low CO concentrations (0.1 or 1%) in air stimulated seed germination. It was not apparent which physiological system(s) CO and O(2) affected. It seems unlikely that CO-stimulated germination arises from effects on the respiratory apparatus, but may be a consequence of CO interactions with an as yet unknown physiological factor in the seed. We provide a model of Setaria spp. dormancy consistent with its seed morphology, the gas-germination data, and the hypothesized second physiological factor that may be involved in CO stimulated germination.  相似文献   

17.
When Rhodopseudomonas capsulata B10 grows in media with different organic compounds, the hydrogenase activity estimated both by the evolution and uptake of H2 is lowest in cells taken from the middle of the exponential growth phase, and highest in cells from the beginning of the stationary phase. Cells grown in a medium containing malate have a higher hydrogenase activity than those cultivated in a medium with lactate or other compounds (900 and 20 nmoles of H2 per 1 min per 1 mg of protein, respectively). In the experiments with chloramphenicol (10(-5) M), organic compounds (not CO2) were shown to repress hydrogenase synthesis. When the cells were incubated in a medium without an organic substrate or in its presence, the exogenous H2 or H2 evolved as the result of nitrogenase action causes an increase in the activity of hydrogenase.  相似文献   

18.
Glucose-induced insulin secretion by the perfused sodium pentobarbital-anesthetized-rat pancreases was studied under different extracellular pH ranging from 7.4 to 7.8. Under our experimental conditions the amount of insulin released was inversely correlated to the pH increase. Besides, metabolic (CO2H- excess) or gaseous (low pCO2) type of alkalosis, were equally effective inhibiting insulin secretion. During a 16.6 mM glucose stimulus, sequential modifications of extracellular pH (7.4-7.8-7.4) caused a dramatic decrease in insulin secretion during alkalosis and an enhancement of its release during the second 7.4 period. The installment and remotion of the inhibition followed almost immediately the changes in the pH of the perfusates. These findings indicate that extracellular diminution of H+ concentration produces a gradual and quickly reversible decrease upon glucose-induced insulin secretion. These characteristics suggest that the inhibitory effect may be mediated through changes in intracellular and/or transmembrane ion fluxes coupled to the variations in H+ concentration.  相似文献   

19.
Bacterial biofilm removal processes due to shear and catastrophic sloughing have been investigated in a turbulent flow system under conditions of carbon versus oxygen substrate limitations and varying aqueous phase calcium concentrations. Biofilm cellular and extracellular polymer carbon, total biofilm carbon and mass, and biofilm calcium concentrations are measured for pure culture biofilms of the facultative aerobe, Pseudomonas putida ATCC 11172. Results indicate oxygen-limited biofilms reach a higher steady-state biofilm organic carbon level than carbon-limited biofilms. Oxygen-limited biofilms also exhibit (1) a higher extracellular polymer-carbon: cell-carbon ratio throughout biofilm development and (2) a higher biofilm calcium content than carbon-limited biofilms. Increasing aqueous phase calcium concentrations increase the amount of biofilm calcium in both cases; the rate of calcium accumulation in oxygen-limited biofilms increases with increasing liquid phase calcium concentrations over the entire range studied while the rates of calcium accumulation in carbon-limited biofilms appear independent of aqueous phase calcium concentrations above 11.0 mg/L. Oxygen-limited biofilms with their higher extracellular polymer and calcium content exhibit shear removal rates that are 20-40% of those observed for carbon-limited biofilms. However, it is the oxygen-limited biofilms that experience catastrophic sloughing events. The carbon-limited biofilms studied here never sloughed even if subjected to intentional long-term deprivation of all nutrients. Reduced shear removal and the susceptibility to sloughing of the oxygen-limited biofilms are attributed to their more cohesive structure bought about by their relatively greater extracellular polymer production.  相似文献   

20.
Most probable number counts showed that denitrifying species were the numerically predominant NO3- reducing bacteria in the faeces of five methanogenic individuals [about 10(10) bacteria (g dry wt faeces)-1]. In faecal slurries, however, denitrification was a relatively minor route of NO3- dissimilation, since only about 3% of the NO3- was converted to gaseous products, with NO3- being mainly reduced to NO2- and NH4+. When KNO2 was added to the slurries, denitrification became quantitatively more significant with approximately 23% of the NO2- being lost as gaseous products. The addition of KNO3 (10 mM) to slurries containing either starch or casein significantly decreased H2 and CH4 production. The effect of NO3- on methanogenesis was twofold: firstly, H2 accumulation decreased due to diversion of electrons towards NO3-/NO2- reduction, and as a result of H2 being used as an electron donor for NO3- reduction, resulting in the removal of the methanogenic substrate; secondly, there was direct inhibition of methane-producing bacteria by NO3- and NO2-. In starch-containing slurries, acetate: butyrate molar ratios were increased when NO3- was added but this effect was not observed when casein replaced starch. These results show that the ability of NO3-/NO2- to act as an electron sink can significantly influence the major products of the human colonic fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号