首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In light of recent experiments suggesting high-spin (HS) Ni(II) species in the catalytic cycle of [NiFe] hydrogenase, a series of models of the Ni(II) forms Ni-SI(I,II), SI-CO and Ni-R(I,II,III) were examined in their high-spin states via density functional calculations. Because of its importance in the catalytic cycle, the Ni-C form was also included in this study. Unlike the Ni(II) forms in previous studies, in which a low-spin (LS) state was assumed and a square-planar structure found, the optimized geometries of these HS Ni(II) forms resemble those observed in the crystal structures: a distorted tetrahedral to distorted pyramidal coordination for the NiS4. This resemblance is particularly significant because the LS state is 20-30 kcal/mol less stable than the HS state for the geometry of the crystal structure. If these Ni(II) forms in the enzyme are not high spin, a large change in geometry at the active site is required during the catalytic cycle. Furthermore, only the HS state for the CO-inhibited form SI-CO has CO stretching frequencies that match the experimental results. As in the previous work, these new results show that the heterolytic cleavage reaction of dihydrogen (where H2 is cleaved with the metal acting as a hydride acceptor and a cysteine as the proton acceptor) has a lower energy barrier and is more exothermic when the active site is oxidized to Ni(III). The enzyme models described here are supported by a calibrated correlation of the calculated and measured CO stretching frequencies of the forms of the enzyme. The correlation coefficient for the final set of models of the forms of [NiFe] hydrogenase is 0.8.  相似文献   

2.
[FeFe] hydrogenases are H2-evolving enzymes that feature a diiron cluster in their active site (the [2Fe]H cluster). One of the iron atoms has a vacant coordination site that directly interacts with H2, thus favoring its splitting in cooperation with the secondary amine group of a neighboring, flexible azadithiolate ligand. The vacant site is also the primary target of the inhibitor O2. The [2Fe]H cluster can span various redox states. The active-ready form (Hox) attains the FeIIFeI state. States more oxidized than Hox were shown to be inactive and/or resistant to O2. In this work, we used density functional theory to evaluate whether azadithiolate-to-iron coordination is involved in oxidative inhibition and protection against O2, a hypothesis supported by recent results on biomimetic compounds. Our study shows that Fe–N(azadithiolate) bond formation is favored for an FeIIFeII active-site model which disregards explicit treatment of the surrounding protein matrix, in line with the case of the corresponding FeIIFeII synthetic system. However, the study of density functional theory models with explicit inclusion of the amino acid environment around the [2Fe]H cluster indicates that the protein matrix prevents the formation of such a bond. Our results suggest that mechanisms other than the binding of the azadithiolate nitrogen protect the active site from oxygen in the so-called H ox inact state.  相似文献   

3.
Electron paramagnetic resonance (EPR) and Fourier transform IR studies on the soluble hydrogenase from Acidithiobacillus ferrooxidans are presented. In addition, detailed sequence analyses of the two subunits of the enzyme have been performed. They show that the enzyme belongs to a group of uptake [NiFe] hydrogenases typical for Cyanobacteria. The sequences have also a close relationship to those of the H2-sensor proteins, but clearly differ from those of standard [NiFe] hydrogenases. It is concluded that the structure of the catalytic centre is similar, but not identical, to that of known [NiFe] hydrogenases. The active site in the majority of oxidized enzyme molecules, 97% in cells and more than 50% in the purified enzyme, is EPR-silent. Upon contact with H2 these sites remain EPR-silent and show only a limited IR response. Oxidized enzyme molecules with an EPR-detectable active site show a Nir*-like EPR signal which is light-sensitive at cryogenic temperatures. This is a novelty in the field of [NiFe] hydrogenases. Reaction with H2 converts these active sites to the well-known Nia-C* state. Illumination below 160 K transforms this state into the Nia-L* state. The reversal, in the dark at 200 K, proceeds via an intermediate Ni EPR signal only observed with the H2-sensor protein from Ralstonia eutropha. The EPR-silent active sites in as-isolated and H2-treated enzyme are also light-sensitive as observed by IR spectra at cryogenic temperatures. The possible origin of the light sensitivity is discussed. This study represents the first spectral characterization of an enzyme of the group of cyanobacterial uptake hydrogenases. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Hydrogenases are enzymes which catalyze the reversible cleavage of molecular hydrogen into protons and electrons. In [FeFe] hydrogenases the active center is a 6Fe6S cluster, referred to as the “H-cluster.” It consists of the redox-active binuclear subcluster ([2Fe]H) coordinated by CN and CO ligands and the cubane-like [4Fe–4S]H subcluster which is connected to the protein via Cys ligands. One of these Cys ligands bridges to the [2Fe]H subcluster. The CO-inhibited form of [FeFe] hydrogenase isolated from Desulfovibrio desulfuricans was studied using advanced EPR methods. In the Hox–CO state the open coordination site at the [2Fe]H subcluster is blocked by extrinsic CO, giving rise to an EPR-active S = 1/2 species. The CO inhibited state was prepared with 13CO and illuminated under white light at 273 K. In this case scrambling of the CO ligands occurs. Three 13C hyperfine couplings of 17.1, 7.4, and 3.8 MHz (isotropic part) were observed and assigned to 13CO at the extrinsic, the bridging, and the terminal CO-ligand positions of the distal iron, respectively. No 13CO exchange of the CO ligand to the proximal iron was observed. The hyperfine interactions detected indicate a rather large distribution of the spin density over the terminal and bridging CO ligands attached to the distal iron. Furthermore, 14N nuclear spin interactions were measured. On the basis of the observed 14N hyperfine couplings, which result from the CN ligands of the [2Fe]H subcluster, it has been concluded that there is very little unpaired spin density on the cyanides of the binuclear subcluster.
Wolfgang Lubitz (Corresponding author)Email:
  相似文献   

5.
Mössbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)FeIIFeI(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe] hydrogenases, and the parent FeIFeI derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal FeI ( $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I ) site, A x,y,z  = [?24 (6), ?12 (2), 20 (2)] MHz, and the detection of significant internal fields (approximately 2.3 T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. Mössbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200 K. Insight from the experimental hyperfine tensors of the FeI site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe–Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two $ d_{{z^{2} }} $ d z 2 -type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe–Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the $ d_{{z^{2} }} $ d z 2 orbital of $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I . DFT calculations imply that the Mössbauer properties can be traced to this $ d_{{z^{2} }} $ d z 2 orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin FeI in 1 OX is discussed in the context of the known A tensors for the oxidized states of the [FeFe] hydrogenases.  相似文献   

6.
[NiFe] hydrogenases catalyze the reversible formation of H2. The [NiFe] heterobimetallic active site is rich in redox states. Here, we investigate the key catalytic state Ni?CC of Desulfovibrio vulgaris Miyazaki F hydrogenase using a cluster model that includes the truncated amino acids of the entire second coordination sphere of the enzyme. The optimized geometries, computed g?tensors, hyperfine coupling constants, and IR stretching frequencies all agree well with experimental values. For the hydride in the bridging position, only a single minimum on the potential energy surface is found, indicating that the hydride bridges and binds to both nickel and iron. The influence of the second coordination sphere on the electronic structure is investigated by comparing results from the large cluster models with truncated models. The largest interactions of the second coordination sphere with the active site concern the hydrogen bonds with the cyanide ligands, which modulate the bond between iron and these ligands. Secondly, the electronic structure of the active site is found to be sensitive to the protonation state of His88. This residue forms a hydrogen bond with the spin-carrying sulfur atom of Cys549, which in turn tunes the spin density at the nickel and coordinating sulfur atoms. In addition, the unequal distribution of spin density over the equatorial cysteine residues results from different orientations of the cysteine side chains, which are kept in their particular orientation by the secondary structure of the protein.  相似文献   

7.
The magnetic hyperfine structure observed in the 57Fe Mössbauer spectra of the high-potential iron protein from Chromatium shows that the iron atoms are inequivalent in pairs, with hyperfine fields of 121 and 90kG.  相似文献   

8.
9.
In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.  相似文献   

10.
The study of Ni–Fe–Se hydrogenases is interesting from the basic research point of view because their active site is a clear example of how nature regulates the catalytic function of an enzyme by the change of a single residue, in this case a cysteine, which is replaced by a selenocysteine. Most hydrogenases are inhibited by CO and O2. In this work we studied these inhibition processes for the Ni–Fe–Se hydrogenase from Desulfovibrio vulgaris Hildenborough by combining catalytic activity measurements, followed by mass spectrometry or chronoamperometry, with Fourier transform IR spectroscopy experiments. The results show that the CO inhibitor binds to Ni in both conformations of the active site of this hydrogenase in a way similar to that in standard Ni–Fe hydrogenases, although in one of the CO-inhibited conformations the active site of the Ni–Fe–Se hydrogenase is more protected against the attack by O2. The inhibition of the Ni–Fe–Se hydrogenase activity by O2 could be explained by oxidation of the terminal cysteine ligand of the active-site Ni, instead of the direct attack of O2 on the bridging site between Ni and Fe.  相似文献   

11.
[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe–4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe–4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron–sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx46–53HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.  相似文献   

12.
13.
Abstract

Oxidative stress is the hallmark of various chronic inflammatory lung diseases. Increased concentrations of reactive oxygen species (ROS) in the lungs of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples or to examine the affected compartments, to the patient's discomfort. As a consequence, there is a need for less or non-invasive approaches to measure oxidative stress. The collection of exhaled breath condensate (EBC) has recently emerged as a non-invasive sampling method for real-time analysis and evaluation of oxidative stress biomarkers in the lower respiratory tract airways. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde, 4-hydroxy-2-nonenal, antioxidants, glutathione and nitrosative stress such as nitrate/nitrite and nitrosated species have been successfully measured in EBC. The reproducibility, sensitivity and specificity of the methodologies used in the measurements of EBC oxidative stress biomarkers are discussed. Oxidative stress biomarkers also have been measured for various antioxidants in disease prognosis. EBC is currently used as a research and diagnostic tool in free radical research, yielding information on redox disturbance and the degree and type of inflammation in the lung. It is expected that EBC can be exploited to detect specific levels of biomarkers and monitor disease severity in response to appropriate prescribed therapy/treatment.  相似文献   

14.
15.
Group 1 hydrogenases are periplasmic enzymes and are thus strongly affected by the "outside world" the cell experiences. This exposure has brought about an extensive heterogeneity in their cofactors and redox partners. Whereas in their majority they are very O(2)-sensitive, several enzymes of this group have been recently reported to be O(2)-tolerant. Structural and biochemical studies have shown that this O(2)-tolerance is conferred by the presence of an unusual iron-sulfur cofactor with supernumerary cysteine ligation (6 instead of 4 Cys, hence called '6C cluster'). This atypical cluster coordination affords redox plasticity (i.e. two-redox transitions), unprecedented for this type of cofactors and likely involved in resistance to O(2). Genomic screening and phylogenetic tree reconstruction revealed that 6C hydrogenases form a monophyletic clade and are unexpectedly widespread among bacteria. However, several other well-defined clades are observed, which indicate early diversification of the enzyme into different subfamilies. The various idiosyncrasies thereof are shown to comply with a very simple rule: phylogenetic grouping of hydrogenases directly correlates with their specific functions and hence biochemical characteristics. The observed variability results from gene duplication, gene shuffling and subsequent adaptation of the diversified enzymes to specific environments. An important factor for this diversification seems to have been the emergence of molecular oxygen. Hydrogenases appear to have dealt with oxidative stress in various ways, the most successful of which, however, was the innovation of the 6C-cluster conferring pronounced O(2)-tolerance to the parent enzymes.  相似文献   

16.
The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and M?ssbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.  相似文献   

17.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

18.
The primary and three-dimensional structures of a [NiFe] hydrogenase isolated from D. desulfitricans ATCC 27774 were determined, by nucleotide analysis and single-crystal X-ray crystallography. The three-dimensional structural model was refined to R=0.167 and Rfree=0.223 using data to 1.8 A resolution. Two unique structural features are observed: the [4Fe-4S] cluster nearest the [NiFe] centre has been modified [4Fe-3S-3O] by loss of one sulfur atom and inclusion of three oxygen atoms; a three-fold disorder was observed for Cys536 which binds to the nickel atom in the [NiFe] centre. Also, the bridging sulfur atom that caps the active site was found to have partial occupancy, thus corresponding to a partly activated enzyme. These structural features may have biological relevance. In particular, the two less-populated rotamers of Cys536 may be involved in the activation process of the enzyme, as well as in the catalytic cycle. Molecular modelling studies were carried out on the interaction between this [NiFe] hydrogenase and its physiological partner, the tetrahaem cytochrome c3 from the same organism. The lowest energy docking solutions were found to correspond to an interaction between the haem IV region in tetrahaem cytochrome c3 with the distal [4Fe-4S] cluster in [NiFe] hydrogenase. This interaction should correspond to efficient electron transfer and be physiologically relevant, given the proximity of the two redox centres and the fact that electron transfer decay coupling calculations show high coupling values and a short electron transfer pathway. On the other hand, other docking solutions have been found that, despite showing low electron transfer efficiency, may give clues on possible proton transfer mechanisms between the two molecules.  相似文献   

19.
Parkinson’s disease (PD) is hallmarked by the abnormal intracellular inclusions (Lewy bodies or LBs) in dopaminergic cells. Amyloidogenic protein α-synuclein (α-syn) and iron (including both Fe(III) and Fe(II)) are both found to be present in LBs. The interaction between iron and α-syn might have important biological relevance to PD etiology. Previously, a moderate binding affinity between α-syn and Fe(II) (5.8 × 103 M−1) has been measured, but studies on the binding between α-syn and Fe(III) have not been reported. In this work, electrospray mass spectrometry (ES-MS), cyclic voltammetry (CV), and fluorescence spectroscopy were used to study the binding between α-syn and Fe(II) and the redox property of the resultant α-syn-Fe(II) complex. The complex is of a 1:1 stoichiometry and can be readily oxidized electrochemically and chemically (by O2) to the putative α-syn-Fe(III) complex, with H2O2 as a co-product. The reduction potential was estimated to be 0.025 V vs. Ag/AgCl, which represents a shift by −0.550 V vs. the standard reduction potential of the free Fe(III)/Fe(II) couple. Such a shift allows a binding constant between α-syn and Fe(III), 1.2 × 1013 M−1, to be deduced. Despite the relatively high binding affinity, α-syn-Fe(III) generated from the oxidation of α-syn-Fe(II) still dissociates due to the stronger tendency of Fe(III) to hydrolyze to Fe(OH)3 and/or ferrihydrite gel. The roles of α-syn and its interaction with Fe(III) and/or Fe(II) are discussed in the context of oxidative stress, metal-catalyzed α-syn aggregation, and iron transfer processes.  相似文献   

20.
The known complex [Et4N]3[Fe(MoS4)2] has been shown by EPR and visible spectral studies to react with both thiophenol and selenophenol. The reaction results in a change in the characteristic S=3/2 EPR spectrum of this species from a complex rhombic pattern to one of a very simple axial appearance. Although this effect is similar to that observed for reaction of these species with the iron- molybdenum cofactor of nitrogenase, a moiety known to consist of a FeMoS cluster species, the large excesses of reagents and the long reaction times required for complete formation of product indicate that these reactions are of questionable direct relevance to the biological system. The reaction corresponding to the EPR spectral change from rhombic to axial in the [Fe(MoS4)2]3−/PhSeH system has also been partially characterized by product isolation which indicates that attack by selenol of the two terminal MoS2 moieties in the starting material has occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号