首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.  相似文献   

2.
Søe K  Grosse F 《Nucleic acids research》2003,31(22):6585-6592
The tumor suppressor protein p53 and the human DNA topoisomerase I (htopoI) interact with each other, which leads to a stimulation of the catalytic activity of htopoI. Moreover, p53 stimulates the topoisomerase I-induced recombination repair (TIRR) reaction. However, little was known about how p53 stimulates this topoisomerase I activity. Here we demonstrate that monomeric p53 is sufficient for the stimulation of the topoisomerase I-catalyzed relaxation activity, but the tetrameric form of p53 is required for the stimulation of TIRR. We also show that p53 stimulates topoisomerase I activity by increasing the dissociation of htopoI from DNA. Since htopoI forms a closed ring structure around the DNA, our results suggest that p53 induces a conformational change within htopoI that results in an opening of the clamp, and thereby releases htopoI from DNA.  相似文献   

3.
4.
Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Bloom's syndrome is a rare autosomal recessive disorder characterized by genomic instability and predisposition to cancer. BLM, the gene defective in Bloom's syndrome, encodes a 159-kDa protein possessing DNA-stimulated ATPase and ATP-dependent DNA helicase activities. We have examined mechanistic aspects of the catalytic functions of purified recombinant BLM protein. Through analyzing the effects of different lengths of DNA cofactor on ATPase activity, we provide evidence to suggest that BLM translocates along single-stranded DNA in a processive manner. The helicase reaction catalyzed by BLM protein was examined as a function of duplex DNA length. We show that BLM catalyzes unwinding of short DNA duplexes (/=259-bp). The presence of the human single-stranded DNA-binding protein (human replication protein A (hRPA)) stimulates the BLM unwinding reaction on the 259-bp partial duplex DNA substrate. Heterologous single-stranded DNA-binding proteins fail to stimulate similarly the helicase activity of BLM protein. This is the first demonstration of a functional interaction between BLM and another protein. Consistent with a functional interaction between hRPA and the BLM helicase, we demonstrate a direct physical interaction between the two proteins mediated by the 70-kDa subunit of RPA. The interactions between BLM and hRPA suggest that the two proteins function together in vivo to unwind DNA duplexes during replication, recombination, or repair.  相似文献   

14.
15.
16.
17.
Exposure of CV-1P cells to hypoxic conditions causes cell proliferation inhibition concomitant with the accumulation of pRb in the hypophosphorylated, growth suppressive form. This is in part due to inhibition of pRb-directed cdk4 and cdk2 activity. In this study we attempted to elucidate the mechanism by which cdk4 is inactivated under hypoxic conditions. After 18 h of hypoxia, CV-1P cells are inhibited from progressing from G(1) phase into the S phase of the cell cycle. This occurs in conjunction with dephosphorylation of serine-795, which is a putative substrate of cdk4. The amounts of cdk4, cdk6, and the D type cyclins are not affected by 18 h of hypoxia. The levels of cdki p16, p18, p19, and p57 under aerobic or hypoxic conditions were analyzed and although the levels of most cdki are unaffected by hypoxic conditions, the level of p16 increases significantly by 18 h of hypoxia. The mechanism by which cdk4 activity is inhibited under hypoxic conditions may be mediated through p16 association with cdk4. Immunoprecipitation analysis shows that p16 binds to cdk4 under hypoxic conditions but does not in cells maintained under aerobic conditions. Thus p16 may be involved in hypoxia-induced growth inhibition.  相似文献   

18.
Proliferating cell nuclear antigen (PCNA) is a ubiquitous protein that interacts with multiple partners and regulates nuclear activities, including chromatin assembly, histone modifications, replication, and DNA damage repair. The role of specific partners in regulating PCNA activities is not fully understood. Here we identify the nucleosome binding protein HMGN1 as a new PCNA-interacting protein that enhances the binding of PCNA to chromatin but not to purified DNA. Two tetrapeptides in the conservative domain of HMGN1 contain amino acids necessary for the binding of HMGN1 to PCNA. Deletion of both tetrapeptides abolishes the HMGN1-PCNA interaction. PCNA preferentially binds to the linker DNA adjacent to an HMGN-containing nucleosome. In living cells, loss of HMGN1 decreases the rate of PCNA recruitment to damaged DNA sites. Our study identifies a new factor that facilitates the interaction of PCNA with chromatin and provides insights into mechanisms whereby nucleosome binding architectural proteins affect the cellular phenotype.  相似文献   

19.
The yeast VAMP-associated protein (VAP) homolog Scs2p is an endoplasmic reticulum (ER)/nuclear membrane protein that binds to an FFAT (diphenylalanine in an acidic tract) motif found in various lipid-metabolic proteins, including Opi1p, a negative regulator of phospholipid biosynthesis. Here, we show that Scs2p is a novel phosphoinositide-binding protein that can bind to phosphatidylinositol monophosphates and bisphosphates in vitro. The phosphoinositide-binding domain was assigned to the N-terminal major sperm protein (MSP) domain which also contains the FFAT-binding domain. When several lysine residues in the MSP domain were substituted for alanine, the resulting mutant Scs2 proteins lost the phosphoinositide-binding ability and failed to complement the inositol auxotrophy of an scs2 deletion strain. However, the mutant proteins still localized in the ER/nuclear membrane, in a similar manner to wild-type Scs2p. These results suggest the possibility that Scs2p activity is regulated by phosphoinositides to coordinate phospholipid biosynthesis in response to changes in phospholipid composition.  相似文献   

20.
Ger M  Zitkus Z  Valius M 《Cellular signalling》2011,23(10):1651-1658
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH2-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号