首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
X Du  S M Thiem 《Journal of virology》1997,71(10):7866-7872
Protein synthesis is globally shut down at late times postinfection in the baculovirus Autographa californica M nuclear polyhedrosis virus (AcMNPV)-infected gypsy moth cell line Ld652Y. A single gene, hrf-1, from another baculovirus, Lymantria dispar M nucleopolyhedrovirus, is able to preclude protein synthesis shutdown and ensure production of AcMNPV progeny in Ld652Y cells (S. M. Thiem, X. Du, M. E. Quentin, and M. M. Berner, J. Virol. 70:2221-2229, 1996; X. Du and S. M. Thiem, Virology 227:420-430, 1997). AcMNPV contains a potent antiapoptotic gene, p35, and protein synthesis arrest was reported in apoptotic insect cells induced by infection with AcMNPV lacking p35. In exploring the function of host range factor 1 (HRF-1) and the possible connection between protein synthesis shutdown and apoptosis, a series of recombinant AcMNPVs with different complements of p35 and hrf-1 were employed in apoptosis and protein synthesis assays. We found that the apoptotic suppressor AcMNPV P35 was translated prior to protein synthesis shutdown and functioned to prevent apoptosis. HRF-1 prevented protein synthesis shutdown even when the cells were undergoing apoptosis, but HRF-1 could not functionally substitute for P35. The DNA synthesis inhibitor aphidicolin could block both apoptosis and protein synthesis shutdown in Ld652Y cells infected with p35 mutant AcMNPVs but not the protein synthesis shutdown in wild-type AcMNPV-infected Ld652Y cells. These data suggest that protein synthesis shutdown and apoptosis are separate responses of Ld652Y cells to AcMNPV infection and that P35 is involved in inducing a protein synthesis shutdown response in the absence of late viral gene expression in Ld652Y cells. A model was developed for these responses of Ld652Y cells to AcMNPV infection.  相似文献   

3.
Several gypsy moth cell lines have been previously described as nonpermissive for the multiple-embedded nuclear polyhedrosis virus of Autographa californica (AcMNPV). In this report, we demonstrate the semipermissive infection of a gypsy moth cell line, IPLB-LD-652Y, with AcMNPV. IPLB-LD-652Y cells infected with AcMNPV produced classic cytopathic effects but failed to yield infectious progeny virus. Results of experiments employing DNA-DNA dot hybridization suggested that AcMNPV DNA synthesis was initiated from 8 to 12 h postinfection (p.i.), continued at a maximum rate from 12 to 20 h p.i., and declined from 20 to 36 h p.i. The rate of AcMNPV DNA synthesis approximated that observed in the permissive TN-368 cell line. AcMNPV-infected IPLB-LD-652Y cells, pulse-labeled with [(35)S]methionine at various time intervals p.i. and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed four virus-induced proteins, one novel to the semipermissive system and three early alpha proteins, synthesized from 1 to 20 h p.i. Thereafter, both host and viral protein synthesis was completely suppressed. These results suggest that AcMNPV adsorbed, penetrated, and initiated limited macromolecular synthesis in the semipermissive gypsy moth cell line. However, the infection cycle was restricted during the early phase of AcMNPV replication.  相似文献   

4.
A Lu  L K Miller 《Journal of virology》1995,69(10):6265-6272
A plasmid library of 18 late expression factor (LEF) genes (LEF library) from the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) supports transient expression from a late viral promoter in the SF-21 cell line, derived from Spodoptera frugiperda. We found, however, that this LEF library was unable to support expression from the same promoter in the TN-368 cell line, derived from Trichoplusia ni, which is also permissive for AcMNPV replication. To identify the additional factor(s) required for expression in TN-368 cells, we cotransfected the LEF library with clones representing portions of the AcMNPV genome not represented in the LEF library. A single additional gene was identified; this gene corresponded to ORF70 of the complete AcMNPV sequence and potentially encodes a 34-kDa cysteine-rich polypeptide. Because of its differential effect on late gene expression in the two cell lines, we renamed ORF70 hcf-1 (for host cell-specific factor 1). hcf-1 was involved in expression from reporter plasmids under late and very late but not early promoter control, indicating that it was also a LEF gene. Plasmid DNA replication assays indicated that HCF-1 was involved in virus origin-specific DNA replication in TN-368 cells. Three LEF genes, ie-2, lef-7, and p35, required for optimal virus origin-specific plasmid DNA replication or stability in SF-21 cells had little or no influence in TN-368 cells. Thus, as determined by transient-expression assays, cell line-specific and potentially host-specific factors are required for origin-specific DNA replication or stability.  相似文献   

5.
The black tiger prawn Penaeus monodon is a valuable aquaculture product in Taiwan. Two specific diagnostic methods were established for P. monodon-type baculovirus, one using polymerase chain reaction (PCR) technology and the other enzyme-linked immunosorbent assay (ELISA) technology. Monodon-type baculovirus (MBV) was purified by sucrose gradient centrifugation from occlusion bodies of MBV-infected postlarvae of P. monodon. MBV DNA was subsequently purified from the occlusion bodies and its presence was confirmed by PCR using primers of the polyhedrin gene. Based on conserved sequences of the DNA polymerase genes of Autographa californica nuclear polyhedrosis virus (AcMNPV) and Lymantria dispar nuclear polyhedrosis virus (LdMNPV), primers were designed and synthesized to yield a 714 bp PCR fragment from MBV. However, the sequence of this fragment revealed low homology with that of LdMNPV and AcMNPV. From the DNA sequence of this fragment, a second set of primers was designed, and using these primers, a 511 bp DNA fragment was amplified only when MBV DNA was the template. DNA templates from AcMNPV, white spot syndrome diseased shrimp, or PMO cells (a cell line derived from the Oka organ of Penaeus monodon) did not give any amplified DNA fragment. Therefore, this primer pair was specific for the diagnosis of MBV. By using intraspleenic immunization of rabbits with purified MBV occlusion bodies, a polyclonal rabbit antiserum against MBV was obtained. This antiserum could detect nanogram levels of MBV, but did not cross react with white spot syndrome virus (WSSV), homogenates of PMO cells, postlarvae, hepatopancreatic tissue or intestinal tissue of black tiger prawns by competitive ELISA. This sensitive method could detect MBV even in tissue homogenates.  相似文献   

6.
7.
The gene encoding the 35-kDa protein (35k gene) located within the EcoRI-S genome fragment of Autographa californica nuclear polyhedrosis virus (AcMNPV) is transcribed early in infection. To examine its function(s) with respect to virus multiplication, we introduced specific mutations of this early gene into the AcMNPV genome. In Spodoptera frugiperda (SF21) culture, deletion of the 35K gene reduced yields of extracellular, budded virus from 200- to 15,000-fold, depending on input multiplicity. Mutant replication was characterized by dramatically diminished levels of late and very late (occlusion-specific) virus gene expression and premature cell lysis. In contrast, 35K gene inactivation had no effect on virus growth in cultured Trichoplusia ni (TN368) cells. Insertion of the 35K gene and its promoter at an alternate site (polyhedrin locus) restored virus replication to wild-type levels in SF21 culture. Subsequent insertion of 4 bp after codon 81 generated a frameshift mutant that exhibited a virus phenotype indistinguishable from that of 35K deletion mutants and demonstrated that the 35K gene product (p35) was required for wild-type replication in SF21 cells. Mutagenesis also indicated that the C terminus of p35, including the last 12 residues, was required for function. In complementation assays, wild-type virus bearing a functional 35K gene allele stimulated all aspects of 35K null mutant replication and suppressed early cell lysis. These findings indicated that p35 is a trans-dominant factor that facilitates AcMNPV growth in a cell line-specific manner.  相似文献   

8.
9.
Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA.  相似文献   

10.
We previously demonstrated that polyhedron formation (PF) mutants arise at a high frequency during serial passage of the Lymantria dispar nucleopolyhedrovirus (LdMNPV) in the L. dispar 652Y cell line (J. M. Slavicek, N. Hayes-Plazolles, and M. E. Kelly, Biol. Control 5:251-261, 1995). Most of these PF mutants exhibited the traits of few polyhedra (FP) mutants; however, no large DNA insertions or deletions that correlated with the appearance of the FP phenotype were found. In this study, we have characterized several of the PF mutants at the phenotypic and genetic levels. Genetic techniques were used to group the mutations in the LdMNPV PF mutants to the same or closely linked genes. Wild-type viruses were recovered after coinfection of L. dispar 652Y cells with certain combinations of PF mutants. These viruses were analyzed by restriction endonuclease analysis and found to be chimeras of the original PF mutants used in the coinfections. Marker rescue experiments localized the mutations in one group of PF isolates to the region containing the LdMNPV 25K FP gene. The mutations in these PF mutants were identified. Four of five of the LdMNPV FP mutants contain small insertions or deletions within the 25K FP gene. The fifth LdMNPV FP mutant analyzed contained a large deletion that truncated the C terminus of the 25K FP gene product. All of the deletions occurred within the same potential hairpin loop structure, which had the lowest free energy value (most stable hairpin) of the five potential hairpin loop structures present in the 25K FP gene. One of the insertion mutants contained an extra base within a repetitive sequence. These types of mutations are likely caused by errors that occur during DNA replication. The relationship between the types of mutations found within the LdMNPV 25K FP gene and DNA replication-based mutagenesis is discussed.  相似文献   

11.
12.
The polyhedrin gene of the nuclear polyhedrosis virus of the gypsy moth (Lymantria dispar) (LdMNPV) was cloned and sequenced. A polyhedrin open reading frame of 735 nucleotides (nt) was identified which can code for a protein of 245 amino acids that demonstrates a high degree of similarity to other polyhedrins. The protein predicted from the nucleotide sequence shows differences in several regions to that previously sequenced from the LdMNPV polyhedrin protein. The consensus sequence AATAAGTATTTT found at the mRNA start site of baculovirus hyperexpressed genes was located 55 nt upstream from the translational start site.  相似文献   

13.
Ld652Y cells from Lymantria dispar readily undergo apoptosis upon infection with a variety of nucleopolyhedroviruses (NPVs), while L. dispar multicapsid NPV (LdMNPV) infection of Ld652Y cells results in the production of a high titer of progeny viruses. Here, we identify a novel LdMNPV apoptosis suppressor gene, apsup, which functions to suppress apoptosis induced in Ld652Y cells by infection with vAcΔp35, a p35-defective recombinant Autographa californica MNPV. apsup also suppresses apoptosis of Ld652Y cells induced by actinomycin D and UV exposure. Apsup is expressed in LdMNPV-infected Ld652Y cells late in infection, and RNA interference-mediated apsup ablation induces apoptosis of LdMNPV-infected Ld652Y cells.  相似文献   

14.
To demonstrate the essential nature of the baculovirus GP64 envelope fusion protein (GP64 EFP) and to further examine the role of this protein in infection, we inactivated the gp64 efp gene of Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) and examined the biological properties of this virus in vivo. To provide GP64 EFP during construction of the recombinant GP64 EFP-null AcMNPV baculovirus, we first generated a stably transfected insect cell line (SfpOP64-6) that constitutively expressed the GP64 EFP of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV). The AcMNPV gp64 efp gene was inactivated by inserting the bacterial lacZ gene in frame after codon 131 of the gp64 efp gene. The inactivated gp64 gene was cloned into the AcMNPV viral genome by replacement of the wild-type gp64 efp locus. When propagated in the stably transfected insect cells (Sf9OP64-6 cells), budded virions produced by the recombinant AcMNPV GP64 EFP-null virus (vAc64z) contained OpMNPV GP64 EFP supplied by the Sf9OP64-6 cells. Virions propagated in Sf9OP64-6 cells were capable of infecting wild-type Sf9 cells, and cells infected by vAc64z exhibited a blue phenotype in the presence of X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside). Using cytochemical staining to detect vAc64z infected cells, we demonstrated that this GP64 EFP-null virus is defective in cell-to-cell propagation in cell culture. Although defective in cell-to-cell propagation, vAc64z produces occlusion bodies and infectious occlusion-derived virions within the nucleus. Occlusion bodies collected from cells infected by vAc64z were infectious to midgut epithelial cells of Trichoplusia ni larvae. However, in contrast to infection by a control virus, infection by vAc64z did not proceed into the hemocoel. Analysis of vAc64z occlusion bodies in a standard neonate droplet feeding assay showed no virus-induced mortality, indicating that occluded virions produced from vAc64z could not initiate a productive (lethal) infection in neonate larvae. Thus, GP64 EFP is an essential virion structural protein that is required for propagation of the budded virus from cell to cell and for systemic infection of the host insect.  相似文献   

15.
A new multiple nucleopolyhedrovirus strain was isolated from casuarina moth, Lymantria xylina Swinhoe, (Lepidoptera: Lymantriidae) in Taiwan. This Lymantria-derived virus can be propagated in IPLB-LD-652Y and NTU-LY cell lines and showed a few polyhedra (occlusion bodies) CPE in the infected cells. The restriction fragment length polymorphism (RFLP) profiles of whole genome indicated that this virus is distinct from LyxyMNPV and the virus genome size was approximately 139 kbps, which was smaller than that of LyxyMNPV. The molecular phylogenetic analyses of three important genes (polyhedrin, lef-8 and lef-9) were performed. Polyhedrin, LEF-8 and LEF-9 putative amino acid analyses of this virus revealed that this virus belongs to Group II NPV and closely related to LdMNPV than to LyxyMNPV. The phylogenetic distance analysis was further clarified the relationship to LdMNPV and this virus provisionally named LdMNPV-like virus. A significant deletion of a 44 bp sequence found in LdMNPV-like virus was noted in the fp25k sequences of LdMNPV and LyxyMNPV and may play an important role in the few polyhedra CPE. In ultrastructural observations, the nuclei of the infected LD host cells contained large occlusion bodies (OBs), and few OBs, which presented as one or two OBs in a nucleus that was otherwise filled with free nuclocapsids and virions. We concluded that this LdMNPV-like virus is a new LdMNPV strain from L. xylina.  相似文献   

16.
17.
Autographica californica multiple nuclear polyhedrosis virus (AcMNPV) has been shown to encode many of the enzymes involved in the replication of its own DNA. Although the AcMNPV genome contains multiple sets of reiterated sequences that are thought to function as origins of DNA replication, no initiator protein has yet been identified in the set of viral replication enzymes. In this study, the ability of a heterologous origin initiator system to promote DNA replication in AcMNPV-infected cells was examined. A recombinant AcMNPV that expressed the simian virus 40 (SV40) large T antigen was surprisingly found to induce the efficient replication of a transfected plasmid containing an SV40 origin. This replication was subsequently found to involve three essential components: (i) T antigen, since replication of SV40 origin-containing plasmids was not induced by wild-type AcMNPV which did not express this protein; (ii) an intact SV40 core origin, since deletion of specific functional motifs within the origin resulted in a loss of replicative abilities; and (iii) one or more AcMNPV-encoded proteins, since viral superinfection was required for plasmid amplification. Characterization of the replicated DNA revealed that it existed as a high-molecular-weight concatemer and underwent significant levels of homologous recombination between inverted repeat sequences. These properties were consistent with an AcMNPV-directed mode of DNA synthesis rather than that of SV40 and suggested that T antigen-SV40 origin complexes may be capable of initiating DNA replication reactions that can be completed by AcMNPV-encoded enzymes.  相似文献   

18.
Autographa californica nuclear polyhedrosis virus (AcMNPV) recombinants were constructed to test the effectiveness of the AcMNPV 35-kilodalton protein gene (35K gene) and the bacterial neomycin resistance gene (neo) as dominant selectable markers for baculoviruses. Insertion of the AcMNPV apoptosis suppressor gene (p35) into the genome of p35-deletion mutants inhibited premature host cell death and increased virus yields up to 1200-fold at low multiplicities in Spodoptera frugiperda (SF21) cell cultures. When placed under control of an early virus promoter, the bacterial neomycin resistance gene (neo) restored multiplication of AcMNPV in the same cells treated with concentrations of the antibiotic G418 that inhibited wild-type virus growth greater than 1000-fold. The selectivity of these dominant markers was compared by serial passage of recombinant virus mixtures. After four passages, the proportion of p35-containing virus increased as much as 2,000,000-fold relative to deletion mutants, whereas the proportion of neo-containing viruses increased 500-fold relative to wild-type virus under G418 selection. The strength and utility of p35 as a selectable marker was further demonstrated by the construction of AcMNPV expression vectors using polyhedrin-based transfer plasmids that contain p35. Recombinant viruses with foreign gene insertions at the polyhedrin locus accounted for 15 to 30% of the transfection progeny. The proportion of desired viruses was increased to greater than 90% by linearizing the parental virus DNA at the intended site of recombination prior to transfection. These results indicate that p35 and neo facilitate the selection of baculovirus recombinants and that p35, in particular, is an effective marker for the generation of AcMNPV expression vectors.  相似文献   

19.
Apoptosis was postulated as the main barrier to replication of the Autographa californica nuclear polyhedrosis virus (AcMNPV) in a Spodoptera littoralis SL2 cell line (N. Chejanovsky and E. Gershburg, Virology 209:519-525, 1995). Thus, we hypothesized that the viral apoptotic suppressor gene p35 is either poorly expressed or nonfunctional in AcMNPV-infected SL2 cells. These questions were addressed by first determining the steady-state levels of the p35 product, P35, in AcMNPV-infected SL2 cells. Indeed, very low levels of P35 were found in infected SL2 cells in comparison with those in SF9 cells. Overexpression of p35, in transient-transfection and recombinant-virus infection experiments, inhibited actinomycin D- and AcMNPV-induced apoptosis, as determined by reduced cell blebbing and release of oligonucleosomes and increased cell viability of SL2. However, SL2 budded-virus (BV) titers of a recombinant AcMNPV which highly expressed p35 did not improve significantly. Also, injection of S. littoralis larvae with recombinant and wild-type AcMNPV BVs showed similar 50% lethal doses. These data suggest that apoptosis is not the only impediment to AcMNPV replication in these nonpermissive S. littoralis cells, and probably in S. littoralis larvae, so p35 may not be the only host range determinant in this system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号