首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a group of water-soluble drug conjugates in which daunomycin (Dau) is coupled to cationic, amphoteric or anionic branched polypeptides and a new conjugate containing a cationic polypeptide carrier modified with a cell penetrating octaarginine. We investigated in vitro physiological activity of these conjugates in several aspects: in vitro cytotoxicity and cytostatic effect, adhesion and cellular uptake were examined on murine (J774 and L1210) and human (MonoMac6 and HL-60) leukemia cell lines and on murine bone marrow derived macrophages. We found that these processes are dependent on the properties of the carrier, on experimental conditions like concentration and incubation time. We found that attachment of polypeptide and cell penetrating peptide to the bioactive agent, depending on the cell line, could significantly improve the antitumor activity of the drug.  相似文献   

2.
The conjugate of acid labile cis-aconityl-daunomycin (cAD) with branched chain polypeptide, poly[Lys(Glui-DL-Alam)] (EAK) was very effective against L1210 leukemia in mice. However, Dau attached to a polycationic polypeptide, poly[Lys(Seri-DL-Alam)] (SAK) exhibited no in vivo antitumor effect. In order to understand this difference we have performed comparative in vitro studies to dissect properties related to interaction with the whole body (e.g., biodistribution) from those present at cellular or even molecular level. We report here (a) the kinetics of acid-induced Dau liberation, (b) interaction with DPPC phospholipid bilayer, (c) in vitro cytotoxic effect on different tumor cells, and (d) intracellular distribution in HL-60 cells of polycationic (cAD-SAK) and amphoteic (cAD-EAK) conjugates. Fluorescence properties of the two conjugates are also reported. Our findings demonstrate that the kinetics of the drug release, intracellular distribution and in vitro cytotoxic effect are rather similar, while the effect on DPPC phospholipid bilayer and fluorescence properties of the two conjugates are not the same. We also found that the in vitro cytotoxicity is cell line dependent. These observations suggest that the structure of the polypeptide carrier could have marked influence on drug uptake related events.  相似文献   

3.
D-Penicillamine (D-pen) is an established copper chelator. We have recently shown that the copper-catalyzed D-pen oxidation generates concentration-dependent hydrogen peroxide (H 2O 2). Additionally, D-pen coincubated with cupric sulfate resulted in cytotoxicity in human leukemia and breast cancer cells due to the extracellular generation of reactive oxygen species (ROS). The inherent physicochemical properties of D-pen such as its short in vivo half-life, low partition coefficient, and rapid metal catalyzed oxidation limit its intracellular uptake and the potential utility as an anticancer agent in vivo. Therefore, to enhance the intracellular delivery and to protect the thiol moiety of D-pen, we designed, synthesized, and evaluated a novel gelatin-D-pen conjugate. D-pen was covalently coupled to gelatin with a biologically reversible disulfide bond with the aid of a heterobifunctional cross-linker ( N-succinimidyl-3-(2-pyridyldithio)-propionate) (SPDP). Additionally, fluorescein-labeled gelatin-D-pen conjugate was synthesized for cell uptake studies. D-pen alone was shown not to enter leukemia cells. In contrast, the qualitative intracellular uptake of the conjugate in human leukemia cells (HL-60) was shown with confocal microscopy. The conjugate exhibited slow cell uptake (over the period of 48 to 72 h). A novel HPLC assay was developed to simultaneously quantify both D-pen and glutathione in a single run. The conjugate was shown to completely release D-pen in the presence of glutathione (1 mM) in approximately 3 h in PBS buffer, pH 7.4. The gelatin-D-pen conjugate resulted in significantly greater cytotoxicity compared to free D-pen, gelatin alone, and a physical mixture of gelatin and D-pen in human leukemia cells. Further studies are warranted to assess the potential of D-pen conjugate in the delivery of D-pen as a ROS generating anticancer agent.  相似文献   

4.
Peptidic ligands can be used for specific cell targeting and the delivery of payloads into the target cell. Here we describe the screening of a pool of cyclic peptide phage display libraries using whole-cell panning against human melanoma cell line Me6652/4. This strategy resulted in the selection of the cyclic 13-mer Pep42, CTVALPGGYVRVC, which showed preferential internalization into melanoma cell line Me6652/4 versus the reference cell line Me6652/56. This translocation is a receptor-mediated process that does not require electrostatic interactions nor does it involve transfer to the lysosomal compartment. The cellular receptor for Pep42 was identified as the surface membrane form of glucose-regulated protein 78 (GRP78), a member of the heat shock protein family and a marker on malignant cancer cells. The cellular uptake and intracellular trafficking of Pep42-Quantum Dot conjugates was monitored by confocal laser microscopy, and colocalization within the endoplasmic reticulum was observed. The uptake of Pep42 could be blocked by a monoclonal antibody against the identified receptor. Furthermore, Pep42 was shown to target specifically GRP78-expressing cancer cells. The in vitro cytotoxicity of a Pep42-Taxol conjugate was evaluated by flow cytometry wherein the conjugate was shown to induce apoptosis and was more effective in promoting programmed cell death in Me6652/4 cells. In summary, the data presented suggest that cyclic peptide Pep42 might be a powerful tool in the construction of drug conjugates designed to selectively kill malignant cancer cells.  相似文献   

5.
The conjugate of acid labile cis-aconityl-daunomycin (cAD) with branched chain polypeptide, poly[Lys(Glui-DL-Alam)] (EAK) was very effective against L1210 leukemia in mice. However, Dau attached to a polycationic polypeptide, poly[Lys(Seri-DL-Alam)] (SAK) exhibited no in vivo antitumor effect. In order to understand this difference we have performed comparative in vitro studies to dissect properties related to interaction with the whole body (e.g., biodistribution) from those present at cellular or even molecular level. We report here (a) the kinetics of acid-induced Dau liberation, (b) interaction with DPPC phospholipid bilayer, (c) in vitro cytotoxic effect on different tumor cells, and (d) intracellular distribution in HL-60 cells of polycationic (cAD-SAK) and amphoteic (cAD-EAK) conjugates. Fluorescence properties of the two conjugates are also reported. Our findings demonstrate that the kinetics of the drug release, intracellular distribution and in vitro cytotoxic effect are rather similar, while the effect on DPPC phospholipid bilayer and fluorescence properties of the two conjugates are not the same. We also found that the in vitro cytotoxicity is cell line dependent. These observations suggest that the structure of the polypeptide carrier could have marked influence on drug uptake related events.  相似文献   

6.
Pemetrexed (Pem) is a novel antimetabolite type of anticancer drug that demonstrated promising clinical activity in a wide variety of solid tumors, including non‐small cell lung carcinoma and malignant pleural mesothelioma. It inhibits enzymes involved in the folate pathway, for which the presence of its free carboxylic groups is necessary. The heteroaromatic ring system of Pem has a modifiable amino group, which opens a possibility to apply a new strategy to conjugate Pem to carrier molecules. Considering this as well as the necessity of untouched carboxylic groups of Pem in the new conjugates, we developed a new synthesis strategy. Here, we describe the synthesis and the characterization of new Pem‐peptide conjugates in which cell‐penetrating octaarginine or/and lung‐targeting H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 peptide is attached to the drug by thioether bond. The conjugates characterized by RP‐HPLC and MS exhibited cytostatic effect in vitro on non‐small cell lung carcinoma as well as on human leukemia cell lines. The IC50 values of the conjugates were similar, but the conjugates with H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 sequence were slightly more effective. Our data show that the in vitro cytostatic effect of the free Pem was essentially maintained after conjugation with cell‐penetrating or cell‐targeting peptides. Thus, the conjugation strategy reported could lead to the development of a new generation of active Pem conjugates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The integrin α(v)β(6) is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds α(v)β(6) and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to α(v)β(6)-positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2'-position of paclitaxel is attached to the tetrameric peptide via an ester linkage. The conjugate maintains its specificity for α(v)β(6)-expressing NSCLC cells, resulting in selective cytotoxicity. Treatment of α(v)β(6)-positive cells with the conjugate results in cell cycle arrest followed by induction of apoptosis in the same manner as free paclitaxel. However, initiation of apoptosis and the resultant cell death is delayed compared to free drug. The conjugate demonstrates anti-tumor activity in a H2009 xenograft model of NSCLC with efficacy comparable to treatment with free paclitaxel.  相似文献   

8.
Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau) was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III) derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac)-His-Asp-Trp-Lys(Dau = Aoa)-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl). This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa)-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.  相似文献   

9.
Leukemia is the most common childhood cancer. Trisenox, the active ingredient of which is trivalent arsenic, is the first line of treatment for acute promyelocytic leukemia. Since drug action usually requires uptake of the drug, it is of importance to determine the transport system responsible for Trisenox uptake. Recently, human aquaglyceroporin 9 (AQP9) has been shown to transport As(III) in Xenopus oocytes. In this study we report to show that AQP9 expression modulates the drug sensitivity of leukemic cells. AQP9 was transfected into the chronic myelogenous leukemia cell line K562. The transfectants became hypersensitive to Trisenox and Sb(III). The promyelocytic leukemia cell line HL60 treated with vitamin D showed higher expression of AQP9 and hypersensitivity to Trisenox and Sb(III). This sensitivity was due to higher rates of uptake of the trivalent metalloids by the cell lines overexpressing AQP9. Trisenox hypersensitivity results from increased expression of AQP9 drug uptake system. The possibility of using pharmacological agents to increase expression of AQP9 gene delivers the promise of new therapies for the treatment of leukemia. Thus, drug hypersensitivity can be correlated with increased expression of the drug uptake system. This is the first demonstration that AQP9 can modulate drug sensitivity in cancer.  相似文献   

10.
We identified a novel erythropoietin (Epo)-induced protein (CIP29) in lysates of human UT-7/Epo leukemia cells using two-dimensional gel analysis and cloned its full-length cDNA. CIP29 contains 210 amino acids with a predicted MW of 24 kDa, and has a N-terminal SAP DNA-binding motif. CIP29 expression was higher in cancer and fetal tissues than in normal adult tissues. CIP29 mRNA expression is cytokine regulated in hematopoietic cells, being up-regulated by Epo in UT7/Epo cells, and by thrombopoietin (Tpo), FLT3 ligand (FL) and stem cell factor (SCF) in primary human CD34(+) cells. Up-regulation of CIP29 in UT7/Epo cells by Epo was associated with cell cycle progression but not with antiapoptosis. Epo withdrawal reduced CIP29 expression concomitant with cell cycle arrest. Overexpression of CIP29-GFP in HEK293 cells enhances cell cycle progression. CIP29 appears to be a new cytokine regulated protein involved in normal and cancer cell proliferation.  相似文献   

11.
This study investigated sequence-specific cell uptake characteristics of Tat basic domain and related permeation peptides with an emphasis on residue chirality, length, and modified side chains. Effects on cell permeation of defined basic domain sequences within a library of 42 different peptides were evaluated using transport of radiolabeled peptides into human Jurkat leukemia cells. All other factors being equal, when the chirality of the peptide sequence was changed from l to d, uptake values increased up to 13-fold. Control experiments showed that the quantitative difference in uptake could not be attributed to increased decomposition of an l- versus a d-peptide by cellular or serum proteases. Furthermore, length, sequence, and type of chelation domain impacted peptide uptake into cells. The highest level of uptake was found with the following peptides: (23) d-Tat-Orn [Ac-rkkrr-orn-rrr-AHA-kgc-amide] and (33) d-poly-Arg(9) [Ac-rrrrrrrrr-AHA-kgc-amide]. The best of these peptide sequences could be employed as in vivo imaging and drug delivery agents to translocate substrates into cells.  相似文献   

12.
Summary Monoclonal antibodies (IgG1) against high molecular weight antigen A-1-43 on human melanoma cell line A-375 were successfully linked to the anti-tumour protein neocarzinostatin (NCS) using the heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP). The conjugate retained both the reactivity of the antibody and the toxicity of the drug. The antigen-bearing cell line A-375, antigen-lacking cell line MeWo and normal skin fibroblasts were exposed to NCS-monoclonal antibody conjugates. As negative control, cells were also treated with free NCS and NCS coupled to normal mouse IgG1 antibodies. Inhibition of 3H-thymidine uptake after treatment was used to measure the biological activity of the cytotoxic drug complex or substance, respectively.Comparing the inhibition dose for 50% uptake (ID50) it was found that the monoclonal antibody-drug complex is about 100 times more toxic for the antigen-bearing cell line than free NCS or normal mouse IgG1-NCS. This high toxicity is due to a local increase of drug concentration on these cells. With the two cell lines lacking the appropriate antigen no significant differences in the ID50 values were observed. A selectivity factor of 40–50 was obtained by comparing the cytotoxic effect of the monoclonal antibody-NCS conjugate upon the antigen-bearing as opposed to the antigen-lacking cell type. These data demonstrate, that the toxicity of NCS can be directed by monoclonal antibodies to human tumour cells carrying the corresponding surface antigen.  相似文献   

13.
Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.  相似文献   

14.
A series of aminoparthenolide analogs have been synthesized through a diastereoselective conjugate addition of several primary and secondary amines to the α-methylene-γ-butyrolactone function of the very lipophilic sesquiterpene lactone, parthenolide. Seventeen of the above amines derivatives were evaluated in a full panel of 60 cancer cell lines for anticancer activity. Compound 12, derived from tyramine, was found to be cytostatic as well as cytotoxic toward acute lymphoblastic leukemia cells (ALL, CCRF-CEM) at nanomolar concentrations, while the (R)-(1,2,3,4-tetrahydro-1-naphthyl)amino derivative 9 was found to be cytostatic toward human anaplastic large T-cell lymphoma (SR) cells at concentrations below 10 nM.  相似文献   

15.
Specific targeting of tumor cells to achieve higher drug levels in tumor tissue and to overcome cardiotoxic and other secondary effects is the major goal in cancer therapy. With trastuzumab as a humanized monoclonal antibody binding, the HER2 receptor specific targeting is possible. In the present study, target-oriented nanoparticles based on biodegradable human serum albumin (HSA) loaded with cytostatic drug doxorubicin were developed. The surface of the nanoparticles was modified by covalent attachment of trastuzumab. HER2 overexpressing breast cancer cells showed a good cellular binding and uptake of these nanoparticles. The specific transport of the cytostatic drug doxorubicin with this nanoparticulate formulation into the HER2 overexpressing breast cancer cells, their release, and biological activity was demonstrated. The results indicate that these cell-type specific drug-loaded nanoparticles could achieve an improvement in cancer therapy. To our knowledge, this is the first study demonstrating a specific trastuzumab-based targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded nanoparticles.  相似文献   

16.
Cellular and nuclear uptake of dual labelled conjugates could be of great value for chemotherapy and cancer diagnostics. Therefore we designed conjugates in which gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a contrast agent for magnetic resonance imaging and fluorescein isothiocyanate (FITC), a fluorescence marker were coupled to membrane translocation sequences (MTS). The MTSs we employed were the third helix of the Antennapedia homeodomain, the HIV-1 Tat peptide and the N-myristoylated HIV-1 Tat peptide. We used confocal laser scanning microscopy, fluorescence activated cell sorting, magnetic resonance imaging (MRI) and viability tests to examine the cellular and nuclear uptake of these conjugates into U373 glioma cells, as well as their cytotoxic effects. We found that the Antennapedia conjugate was taken up by no more than 20% of the cells. The HIV-1 Tat conjugate showed even lower uptake into less than 3% of cells. Interestingly, N-myristoylation of the HIV-1 Tat conjugate drastically improved its cellular uptake. Up to 70% of cells showed cellular and nuclear uptake of the N-myristoylated HIV-1 Tat conjugate. Conjugate cytotoxicity appears to correlate with cellular uptake.  相似文献   

17.
alpha-Tocopheryl succinate (alpha-TS) is a potent inhibitor of tumor cell proliferation. The goal of the present study was to investigate whether and to what extent alpha-TS associates with plasma lipoproteins and if alpha-TS-enriched lipoproteins inhibit breast cancer cell growth in a manner comparable to the free drug. In vitro enrichment of human plasma revealed that alpha-TS readily associated with the main lipoprotein classes, findings confirmed in vivo in mice. At the highest alpha-TS concentrations, lipoproteins carrying 50000 (VLDL), 5000 (LDL) and 700 (HDL) alpha-TS molecules per lipoprotein particle were generated. alpha-TS enrichment generated lipoprotein particles with slightly decreased density and increased particle radius. To study whether the level of LDL-receptor (LDL-R) expression affects alpha-TS uptake from apoB/E containing lipoprotein particles human breast cancer cells with low (MCF-7) and normal (HBL-100) LDL-R expression were used. The uptake of free, VLDL- and (apoE-free) HDL(3)-associated alpha-TS was nearly identical for both cell lines. In contrast, uptake of LDL-associated alpha-TS by HBL-100 cells (normal LDL-R expression) was about twice as high as compared to MCF-7 cells (low LDL-R expression). VLDL and LDL-associated alpha-TS inhibited proliferation most effectively at the highest concentration of alpha-TS used (100% inhibition of MCF-7 growth with 20 microg/ml of lipoprotein-associated alpha-TS). However, also alpha-TS-free VLDL and LDL inhibited HBL-100 cell proliferation up to 55%. In both cell lines, alpha-TS-enriched HDL(3) inhibited cell growth by 40-60%. Incubation of both cell lines in the presence of free or lipoprotein-associated alpha-TS resulted in DNA fragmentation indicative of apoptosis. Collectively, the present findings demonstrate that: (1) alpha-TS readily associates with lipoproteins in vitro and in vivo; (2) the lipoprotein-enrichment efficacy was dependent on the particle size and/or the triglyceride content of the lipoprotein; (3) uptake of LDL-associated alpha-TS was apparently dependent on the level of LDL-R expression; and (4) lipoproteins were efficient alpha-TS carriers inducing reduced cell proliferation rates and apoptosis in human breast cancer cells as observed for the free drug.  相似文献   

18.
Chemotherapy continues to be the main therapeutic approach in the treatment of hematological malignancies including acute leukemia. Generally, chemotherapy is used to eliminate cancer cells and to restore normal bone marrow function. Simultaneous action of cytostatic drugs on bone marrow angiogenesis decreases the formation of new capillaries and improves therapeutic effect. However, chemotherapeutic agents may also be cytodestructive for cellular elements of other tissues, particularly the vascular endothelium, which can lead to various cardiovascular complications. In this work, we studied the effects of 2 cytostatic drugs, cytosine arabinoside (ara-C) and daunorubicin (DNR), on cultured human vascular (i.e., umbilical) endothelial cells (ECs). Ara-C and DNR were added to cultured cells at concentrations ranging from 1 ng/mL to 100 microg/mL. Drug effects were studied using phase-contrast microscopy, cell viability tests, BRDU incorporation, immunohistochemistry, flow cytometry, and cell cloning. At various concentrations, ara-C and DNR are able to induce morphological and functional changes in cultured cells related to either cytostatic or cytotoxic action. Moreover, ara-C-treated cultured cells displayed significant disturbances in cell adhesion molecule expression and interaction with blood leukocytes. Preliminary data obtained on acute leukemia patients undergoing standard cytostatic therapy ("7+3" regimen) have shown that concentration of the circulating ECs was significantly increased compared with the control group and could be as high as 500-1500 cells/mL of blood. Results obtained suggest that anticancer chemotherapy may induce systemic damage of vascular endothelium related to massive cell loss and (or) alterations of endothelial function.  相似文献   

19.
Effects of artemisinin-tagged holotransferrin on cancer cells   总被引:9,自引:0,他引:9  
Lai H  Sasaki T  Singh NP  Messay A 《Life sciences》2005,76(11):1267-1279
Artemisinin reacts with iron to form free radicals that kill cells. Since cancer cells uptake relatively large amount of iron than normal cells, they are more susceptible to the toxic effect of artemisinin. In previous research, we have shown that artemisinin is more toxic to cancer cells than to normal cells. In the present research, we covalently attached artemisinin to the iron-carrying plasma glycoprotein transferrin. Transferrin is transported into cells via receptor-mediated endocytosis and cancer cells express significantly more transferrin receptors on their cell surface and endocytose more transferrin than normal cells. Thus, we hypothesize that by tagging artemisinin to transferrin, both iron and artemisinin would be transported into cancer cells in one package. Once inside a cell, iron is released and can readily react with artemisinin close by tagged to the transferrin. This would enhance the toxicity and selectivity of artemisinin towards cancer cells. In this paper, we describe a method to synthesize such a compound in which transferrin was conjugated with an analog of artemisinin artelinic acid via the N-glycoside chains on the C-domain. The resulting conjugate ('tagged-compound') was characterized by MALDI-MS, UV/Vis spectroscopy, chemiluminescence, and HPLC. We then tested the compound on a human leukemia cell line (Molt-4) and normal human lymphocytes. We found that holotransferrin-tagged artemisinin, when compared with artemisinin, was very potent and selective in killing cancer cells. Thus, this 'tagged-compound' could potentially be developed into an effective chemotherapeutic agent for cancer treatment.  相似文献   

20.
IRS-1 overexpression has been associated with breast cancer development, hormone independence and antiestrogen resistance. IRS-1 is a major downstream signaling protein for insulin and IGF1 receptors, conveying signals to PI-3K/Akt and ERK1/2 pathways. In estrogen-sensitive breast cancer cell lines, the widely used antiestrogen tamoxifen treatment reduces IRS-1 expression and function, thereby inhibiting IRS-1/PI-3K signaling. IRS-1 may serve as an alternative target to overexpressed IGF1R in breast cancer. While siRNA technology has become commonplace in many laboratories for in vitro gene knockdown studies, and in vivo stability issues are largely solved, its use in vivo is limited by an inability to efficiently and specifically deliver it to the intended site of action. We previously reported reduced survival of human MCF7 estrogen receptor positive breast cancer cells treated with a normal IRS1 siRNA delivered by a cationic lipid, plus an additive effect in combination with tamoxifen. We now report enhanced cellular uptake, relative to the unconjugated serum-stabilized IRS1 siRNA, of a serum-stabilized IRS1 siRNA conjugated with our previously characterized peptide mimetic of IGF1, D-(Cys-Ser-Lys-Cys), without the use of cationic lipids or electroporation, in MCF7 cells that overexpress IGF1R. Excess native IGF1 blocked uptake. An IRS1 siRNA cholesterol conjugate, targeted universally to cell membranes, was taken up by MCF7 cells as much as the peptide mimetic conjugate. IRS1 mRNA knockdown and IRS-1 protein knockdown were comparable for the IGF1 peptide and cholesterol conjugates. The unconjugated serum-stabilized IRS1 siRNA control showed negligible effects. Viability assays showed additive effects of siRNA treatment in combination with tamoxifen. In summary, we have taken the first step in converting an siRNA into a pharmacologically active agent for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号