首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized Yersinia enterocolitica and Yersinia pseudotuberculosis insertion sequences related to insertion sequence 1541, recently identified in Yersinia pestis. For each of the two species, two insertion sequence copies were cloned and sequenced. Genetic elements from Y. pseudotuberculosis were almost identical to insertion sequence 1541, whereas these from Y. enterocolitica were less related. Phylogenetic analysis of the putative transposases encoded by insertion sequences from the three pathogenic members of the genus Yersinia showed that they clustered with those encoded by Escherichia coli and Salmonella enterica elements belonging to the insertion sequence 200/insertion sequence 605 group. Insertion sequences originating from Y. pestis and Y. pseudotuberculosis constitute a monophyletic lineage distinct from that of Y. enterocolitica.  相似文献   

2.
The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains.  相似文献   

3.
Pathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high-pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis . In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis , has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis . A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance ≥ 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica , the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica , is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left-hand part that carries the IS 100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.  相似文献   

4.
The genus Yersinia includes 11 species, 3 of which (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) are pathogenic for humans. The remaining 8 species (Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. bercovieri, Y. mollaretii, Y. rohdei, Y. ruckeri, and Y. aldovae) are merely opportunistic pathogens found mostly in the environment. In this work, the genomic differences among Yersinia were determined using a Y. pestis-specific DNA microarray. The results revealed 292 chromosomal genes that were shared by all Yersinia species tested, constituting the conserved gene pool of the genus Yersinia. Hierarchical clustering analysis of the microarray data revealed the genetic relationships among all 11 species in this genus. The microarray analysis in conjunction with PCR screening greatly reduced the number of chromosomal genes (32) specific for Y. pestis to 16 genes and uncovered a high level of genomic plasticity within Y. pseudotuberculosis, indicating that its different serotypes have undergone an extensively parallel loss or acquisition of genetic content, which is likely to be important for its adaptation to changes in environmental niches.  相似文献   

5.
6.
The evolution of flea-borne transmission in Yersinia pestis   总被引:3,自引:0,他引:3  
Transmission by fleabite is a recent evolutionary adaptation that distinguishes Yersinia pestis, the agent of plague, from Yersinia pseudotuberculosis and all other enteric bacteria. The very close genetic relationship between Y. pestis and Y. pseudotuberculosis indicates that just a few discrete genetic changes were sufficient to give rise to flea-borne transmission. Y. pestis exhibits a distinct infection phenotype in its flea vector, and a transmissible infection depends on genes that are specifically required in the flea, but not the mammal. Transmission factors identified to date suggest that the rapid evolutionary transition of Y. pestis to flea-borne transmission within the last 1,500 to 20,000 years involved at least three steps: acquisition of the two Y. pestis-specific plasmids by horizontal gene transfer; and recruitment of endogenous chromosomal genes for new functions. Perhaps reflective of the recent adaptation, transmission of Y. pestis by fleas is inefficient, and this likely imposed selective pressure favoring the evolution of increased virulence in this pathogen.  相似文献   

7.
Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food-borne and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment.  相似文献   

8.
Bruneteau M  Minka S 《Biochimie》2003,85(1-2):145-152
This review summarizes the state of knowledge on the composition and structure of the lipopolysaccharides (LPS) from three species of Yersinia known to produce disease in humans: Y. pseudotuberculosis, Y. enterocolitica and Y. pestis. We also mention recent data on the genome sequence of Yersinia pestis and the role of LPS in relation to the virulence of this bacteria.  相似文献   

9.
In order to construct a DNA probe for the plague pathogen detection, we have obtained the recombinant plasmid pRD100 carrying an EcoRI-flanked 140 bp fragment from the genetically silent region of Yersinia pestis species-specific plasmid pYP1. When used as a DNA probe for hybridization of DNA from various strains of 25 bacterial species, this DNA fragment was shown to have the complementary sequences in all investigated Yersinia pestis strains (200), including the plasmid pYP1 lacking ones, and in all the studied Yersinia pseudotuberculosis serotype I strains (80). The search for the probe target in these species has led us to conclusion that it is a specific repeated DNA sequence present in more copies in Yersinia pestis than in Yersinia pseudotuberculosis serotype I. The hybridization of these sequences with the radioactive probe and 24 hours autography makes possible the detection of 1.3 x 10(5) cells of Yersinia pestis and 3 x 10(6) cells of Yersinia pseudotuberculosis serotype I immobilized on the nitrocellulose membranes. Use of the probe for analysis of the nitrocellulose membrane fixed spleen smears from animals that died of experimental plague made possible the detection of Yersinia pestis cells within 48 h.  相似文献   

10.
11.
The authors present published data and their own findings on the relationship between Yersinia pestis and Y. pseudotuberculosis and on the origination of Y. pestis from Y. pseudotuberculosis. Study of microbiological and biochemical characteristics, external membrane protein spectra, and stability of chromosomal region of pigmentation brought the authors to a hypothesis that Y. pestis minor subspecies (ssp. caucasica, altaica, hissarica, ulegeica) which are characterized by selective virulence occupy an intermediate position between Y. pseudotuberculosis and basic species of Y. pestis.  相似文献   

12.
Important pathogens in the genus Yersinia include the plague bacillus Yersinia pestis and two enteropathogenic species, Yersinia pseudotuberculosis and Yersinia enterocolitica. A shift in growth temperature induced changes in the number and type of acyl groups on the lipid A of all three species. After growth at 37 degrees C, Y. pestis lipopolysaccharide (LPS) contained the tetra-acylated lipid IV(A) and smaller amounts of lipid IV(A) modified with C10 or C12 acyl groups, Y. pseudotuberculosis contained the same forms as part of a more heterogeneous population in which lipid IV(A) modified with C16:0 predominated, and Y. enterocolitica produced a unique tetra-acylated lipid A. When grown at 21 degrees C, however, the three yersiniae synthesized LPS containing predominantly hexa-acylated lipid A. This more complex lipid A stimulated human monocytes to secrete tumour necrosis factor-alpha, whereas the lipid A synthesized by the three species at 37 degrees C did not. The Y. pestis phoP gene was required for aminoarabinose modification of lipid A, but not for the temperature-dependent acylation changes. The results suggest that the production of a less immunostimulatory form of LPS upon entry into the mammalian host is a conserved pathogenesis mechanism in the genus Yersinia, and that species-specific lipid A forms may be important for life cycle and pathogenicity differences.  相似文献   

13.
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.  相似文献   

14.
Yersinia pestis, the causative agent of plague, seems to have evolved from a gastrointestinal pathogen, Yersinia pseudotuberculosis, in just 1,500-20,000 years--an 'eye blink' in evolutionary time. The third pathogenic Yersinia, Yersinia enterocolitica, also causes gastroenteritis but is distantly related to Y. pestis and Y. pseudotuberculosis. Why do the two closely related species cause remarkably different diseases, whereas the distantly related enteropathogens cause similar symptoms? The recent availability of whole-genome sequences and information on the biology of the pathogenic yersiniae have shed light on this paradox, and revealed ways in which new, highly virulent pathogens can evolve.  相似文献   

15.
A study of the structural and regulatory genes, determining rhamnose fermentation, that are located in the rha locus of the chromosome of Yersinia pestis main and non-main subspecies and of Yersinia pseudotuberculosis of serogroups I-III was performed. The nucleotide sequence of Y. pestis main subspecies differs substantially from those of non-main subspecies and Y. pseudotuberculosis by the presence of a nucleotide substitution in 671 bp location of rhaS gene resulting presumably in the Y. pestis non-main subsp inability to utilize rhamnose. This results in incapability of Y. pestis non-main subspecies to utilize rhamnose. Other nucleotide substitutions found in Y. pestis non-main subspecies strains influence only upon expression efficiency of this diagnostic criterion.  相似文献   

16.
Population genetic studies suggest that Yersinia pestis, the cause of plague, is a clonal pathogen that has recently emerged from Yersinia pseudotuberculosis. Plasmid acquisition is likely to have been a key element in this evolutionary leap from an enteric to a flea-transmitted systemic pathogen. However, the origin of Y. pestis-specific plasmids remains obscure. We demonstrate specific plasmid rearrangements in different Y. pestis strains which distinguish Y. pestis bv. Orientalis strains from other biovars. We also present evidence for plasmid-associated DNA exchange between Y. pestis and the exclusively human pathogen Salmonella enterica serovar Typhi.  相似文献   

17.
Based on differences within the yopT-coding region of Yersinia. enterocolitica, Y pseudotuberculosis and Y pestis, a rapid and sensitive one-step polymerase chain reaction assay with high specificity for pathogenic Y enterocolitica was developed. By this method pathogenic isolates of Y enterocolitica can be easily identified and discriminated from other members of this genus. The entire coding sequence of the yopT effector gene of Y. pseudotuberculosis Y36 was determined.  相似文献   

18.
The lytic activity of plague phage II, serovar 3, with respect to 1,800 bacterial strains has been studied: 760 Yersinia pestis strains, 262 Y. pseudotuberculosis strains, 252 Y. enterocolitica strains, 166 Escherichia coli strains, 90 Shigella strains and 270 strains of other species. The phage has been found to lyse 81.8% of Y. pestis strains, 1 Y. pseudotuberculosis strain and 1 Y. enterocolitica strain. The representatives of other 19 bacterial species have proved to be resistant to the phage. Though having a wide range of action within Y. pestis, the phage does not lyse most of the strains of the causative agent of plague, isolated in certain natural foci. This fact offers promise for using the phage for the differentiation of Y. pestis.  相似文献   

19.
Yersinia and Salmonella harbour plasmids that encode traits important for virulence, enabling both pathogenic genera to survive and grow in cells of the reticulo-endothelial organs during systemic infections. We have detected DNA homology between the Salmonella dublin virulence plasmid pSDL2 and the plasmids of the pathogenic Yersinia species pestis, pseudotuberculosis, and enterocolitica. Three regions of pSDL2 were found to share homology with the virulence plasmid pIB1 of Yersinia pseudotuberculosis. Two separate hybridizing segments mapped within the previously characterized 6.4 kb vir region of pSDL2 in the SalI B fragment. The third homologous region involved the replicon of pIB1, which hybridized to the SalI C2 fragment of pSDL2. The virulence plasmid pCD1 from Y. pestis showed similar homology with the three regions of pSDL2. Homologies to the vir and SalI C2 regions of pSDL2 were also found on plasmids from Yersinia enterocolitica serotypes 0:9, 0:3 and 0:5, 27. The discovery of separate homologous regions on the virulence plasmids of Salmonella and Yersinia suggests a distant evolutionary relationship.  相似文献   

20.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号