首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yoo SK  Chung KS  Kim J  Lee JH  Hong SM  Yoo SJ  Yoo SY  Lee JS  Ahn JH 《Plant physiology》2005,139(2):770-778
CONSTANS (CO) regulates flowering time by positively regulating expression of two floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), in Arabidopsis (Arabidopsis thaliana). FT and SOC1 have been proposed to act in parallel pathways downstream of CO based on genetic analysis using weak ft alleles, since ft soc1 double mutants showed an additive effect in suppressing the early flowering of CO overexpressor plants. However, this genetic analysis was inconsistent with the sequential induction pattern of FT and SOC1 found in inducible CO overexpressor plants. Hence, to identify genetic interactions of CO, FT, and SOC1, we carried out genetic and expression analyses with a newly isolated T-DNA allele of FT, ft-10. We found that ft-10 almost completely suppressed the early flowering phenotype of CO overexpressor plants, whereas soc1-2 partially suppressed the phenotype, suggesting that FT is the major output of CO. Expression of SOC1 was altered in gain- or loss-of-function mutants of FT, whereas expression of FT remained unchanged in gain- or loss-of-function mutants of SOC1, suggesting that FT positively regulates SOC1 to promote flowering. In addition, inactivation of FT caused down-regulation of SOC1 even in plants overexpressing CO, indicating that FT is required for SOC1 induction by CO. Taken together, these data suggest that CO activates SOC1 through FT to promote flowering in Arabidopsis.  相似文献   

2.
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in the hierarchy than CO and FT, suggesting that GI might regulate flowering indirectly by affecting the control of circadian rhythms. We studied the relationship between the roles of GI in flowering and the circadian clock using late elongated hypocotyl circadian clock associated1 double mutants, which are impaired in circadian clock function, plants overexpressing GI (35S:GI), and gi mutants. These experiments demonstrated that GI acts between the circadian oscillator and CO to promote flowering by increasing CO and FT mRNA abundance. In addition, circadian rhythms in expression of genes that do not control flowering are altered in 35S:GI and gi mutant plants under continuous light and continuous darkness, and the phase of expression of these genes is changed under diurnal cycles. Therefore, GI plays a general role in controlling circadian rhythms, and this is different from its effect on the amplitude of expression of CO and FT. Functional GI:green fluorescent protein is localized to the nucleus in transgenic Arabidopsis plants, supporting the idea that GI regulates flowering in the nucleus. We propose that the effect of GI on flowering is not an indirect effect of its role in circadian clock regulation, but rather that GI also acts in the nucleus to more directly promote the expression of flowering-time genes.  相似文献   

3.
4.
5.
Takada S  Goto K 《The Plant cell》2003,15(12):2856-2865
The flowering time of plants is tightly regulated by both promotive and repressive factors. Molecular genetic studies using Arabidopsis have identified several epigenetic repressors that regulate flowering time. Terminal flower2, (TFL2), which encodes a homolog of heterochromatin protein1 represses flowering locus T (FT) expression, which is induced by the activator constans (CO) in response to the long-day signal. Here, we show that TFL2, CO, and FT are expressed together in leaf vascular tissues and that TFL2 represses FT expression continuously throughout development. Mutations in TFL2 derepress FT expression within the vascular tissues of leaves, resulting in daylength-independent early flowering. TFL2 can reduce FT expression even when CO is overexpressed. However, FT expression reaches a level sufficient for floral induction even in the presence of TFL2, suggesting that TFL2 does not maintain FT in a silent state or inhibit it completely; rather, it counteracts the effect of CO on FT activation.  相似文献   

6.
7.
8.
Analysis of flowering pathway integrators in Arabidopsis   总被引:9,自引:0,他引:9  
Flowering is regulated by an integrated network of several genetic pathways in Arabidopsis. The key genes integrating multiple flowering pathways are FT, SOC1 and LFY. To elucidate the interactions among these integrators, genetic analyses were performed. FT and SOC1 share the common upstream regulators CO, a key component in the long day pathway, and FLC, a flowering repressor integrating autonomous and vernalization pathways. However, the soc1 mutation further delayed the flowering time of long day pathway mutants including ft, demonstrating that SOC1 acts partially independently of FT. Although soc1 did not show an obvious defect in flower meristem determination on its own, it dramatically increased the number of coflorescences in a lfy mutant, which is indicative of a defect in floral initiation. Therefore, double mutant analysis shows that the three integrators have both overlapping and independent functions in the determination of flowering time and floral initiation. The expression analysis showed that FT regulates SOC1 expression, and SOC1 regulates LFY expression, but not vice versa, which is consistent with the fact that FT and LFY have the least overlapping functions among the three integrators. The triple mutation ft soc1 lfy did not block flowering completely under long days, indicating the presence of other integrators. Finally, vernalization accelerated flowering of flc ft soc1 and ft soc1 lfy triple mutants, which shows that the vernalization pathway also has targets other than FLC, FT, SOC1 and LFY. Our genetic analysis reveals the intricate nature of genetic networks for flowering.  相似文献   

9.
10.
Isolation of CONSTANS as a TGA4/OBF4 interacting protein   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
Kim JJ  Lee JH  Kim W  Jung HS  Huijser P  Ahn JH 《Plant physiology》2012,159(1):461-478
The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(-)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(-). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature.  相似文献   

13.
14.
15.
The red and far-red light-absorbing phytochromes interact with the circadian clock, a central oscillator that sustains a 24-h period, to measure accurately seasonal changes in day-length and regulate the expression of several key flowering genes. The interactions and subsequent signalling steps upstream of the flowering genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) remain largely unknown. We report here that a photomorphogenic mutant, red and far-red insensitive 2-1 ( rfi2-1), flowered early particularly under long days. The rfi2-1 mutation also enhanced the expression of CO and FT under day/night cycles or constant light. Both co-2 and gigantea-2 (gi-2) were epistatic to rfi2-1 in their flowering responses. The gi-2 mutation was also epistatic to the rfi2-1 mutation in the expression of CO and hypocotyl elongation. However, the rfi2-1 mutation did not affect the expression of GI, a gene that mediates between the circadian clock and the expression of CO. Like many other flowering genes, the expression of RFI2 oscillated under day/night cycles and was rhythmic under constant light. The amplitude of the rhythmic expression of RFI2 was significantly reduced in phyB-9 or lhy-20 plants, and was also affected by the gi-2 mutation. As previously reported, the gi-2 mutation affects the period length and amplitude of CCA1 and LHY expression, and GI may act through a feedback loop to maintain a proper circadian function. We propose a regulatory step in which RFI2 represses the expression of CO, whereas GI may maintain the proper expression of RFI2 through its positive action on the circadian clock. The regulatory step serves to tune the circadian outputs that control the expression of CO and photoperiodic flowering.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号