共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Oral streptococcal colonization has been associated with stable CF lung function. However, no studies have demonstrated how Streptococcus salivarius, the most abundant streptococcal species found in individuals with stable CF lung disease, potentially improves lung function or becomes incorporated into the CF airway biofilm. By utilizing a two-species biofilm model to probe interactions between S. salivarius and P. aeruginosa, we discovered that the P. aeruginosa exopolysaccharide Psl promoted S. salivarius biofilm formation. Further, we identified a S. salivarius maltose-binding protein (MalE) that is required for promotion of biofilm formation both in vitro and in a Drosophila melanogaster co-infection model. Finally, we demonstrate that promotion of dual biofilm formation with S. salivarius is common among environmental and clinical P. aeruginosa isolates. Overall, our data supports a model in which S. salivarius uses a sugar-binding protein to interact with P. aeruginosa exopolysaccharide, which may be a strategy by which S. salivarius establishes itself within the CF airway microbial community.Subject terms: Bacteriology, Biofilms, Microbiome, Clinical microbiology 相似文献
2.
Ma L Wang S Wang D Parsek MR Wozniak DJ 《FEMS immunology and medical microbiology》2012,65(2):377-380
The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P.?aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P.?aeruginosa CF infection. 相似文献
3.
Matthew S. Byrd Irina Sadovskaya Evgueny Vinogradov Haiping Lu April B. Sprinkle Stephen H. Richardson Luyan Ma Brad Ralston Matthew R. Parsek Erin M. Anderson Joseph S. Lam Daniel J. Wozniak 《Molecular microbiology》2009,73(4):622-638
Exopolysaccharides contribute significantly to attachment and biofilm formation in the opportunisitc pathogen Pseudomonas aeruginosa . The Psl polysaccharide, which is synthesized by the p olysaccharide s ynthesis l ocus ( psl ), is required for biofilm formation in non-mucoid strains that do not rely on alginate as the principal biofilm polysaccharide. In-frame deletion and complementation studies of individual psl genes revealed that 11 psl genes, pslACDEFGHIJKL , are required for Psl production and surface attachment. We also present the first structural analysis of the psl -dependent polysaccharide, which consists of a repeating pentasaccharide containing d -mannose, d -glucose and l -rhamnose:
In addition, we identified the sugar nucleotide precursors involved in Psl generation and demonstrated the requirement for GDP- d -mannose, UDP- d -glucose and dTDP- l -rhamnose in Psl production and surface attachment. Finally, genetic analyses revealed that wbpW restored Psl production in a pslB mutant and pslB promoted A-band LPS synthesis in a wbpW mutant, indicating functional redundancy and overlapping roles for these two enzymes. The structural and genetic data presented here provide a basis for further investigation of the Psl proteins and potential roles for Psl in the biology and pathogenesis of P. aeruginosa . 相似文献
In addition, we identified the sugar nucleotide precursors involved in Psl generation and demonstrated the requirement for GDP- d -mannose, UDP- d -glucose and dTDP- l -rhamnose in Psl production and surface attachment. Finally, genetic analyses revealed that wbpW restored Psl production in a pslB mutant and pslB promoted A-band LPS synthesis in a wbpW mutant, indicating functional redundancy and overlapping roles for these two enzymes. The structural and genetic data presented here provide a basis for further investigation of the Psl proteins and potential roles for Psl in the biology and pathogenesis of P. aeruginosa . 相似文献
4.
Manuel Romero Alessandro Carabelli Michael R. Swift Michael I. Smith 《Environmental microbiology》2022,24(3):1560-1572
Decades after incorporating plastics into consumer markets, research shows that these polymers have spread worldwide. Fragmentation of large debris leads to smaller particles, collectively called microplastics (MPs), which have become ubiquitous in aquatic environments. A fundamental aspect of understanding the implications of MP contamination on ecosystems is resolving the complex interactions of these artificial substrates with microbial cells. Using polystyrene microparticles as model polymers, we conducted an exploratory study where these interactions are quantitatively analyzed using an in vitro system consisting of single-bacterial species capturing and aggregating MPs in water. Here we show that the production of Psl exopolysaccharide by Pseudomonas aeruginosa (PA) does not alter MPs colloidal stability but plays a key role in microspheres adhesion to the cell surface. Further aggregation of MPs by PA cells depends on bacterial mobility and the presence of sufficient flow to prevent rapid sedimentation of early MP-PA assembles. Surprisingly, cells in MP-PA aggregates are not in a sessile state despite the production of Psl, enhancing the motility of the aggregates by an order of magnitude relative to passive diffusion. The generated data could inform the creation of predictive models that accurately describe the dynamics and influence of bacterial growth on plastics debris. 相似文献
5.
The Pseudomonas aeruginosa polysaccharide synthesis locus (psl) is predicted to encode an exopolysaccharide which is critical for biofilm formation. Here we used chemical composition analyses and mannose- or galactose-specific lectin staining, followed by confocal laser scanning microscopy and electron microscopy, to show that Psl is a galactose-rich and mannose-rich exopolysaccharide. 相似文献
6.
Phytol, isolated from Aster yomena, is widely distributed as a constituent of chlorophyll. In the present study, we confirmed the antibacterial activity of phytol and its mechanism inducing oxidative cell death in Pseudomonas aeruginosa. In phytol-treated cells, elevated level of intracellular reactive oxygen species (ROS) and transient NADH depletion were observed. These results demonstrated that phytol induced ROS accumulation and that the electron transport chain was involved in increase of ROS. Due to this ROS generation, the imbalance developed between intracellular ROS and the antioxidant defense system, leading to decrease of reduced glutathione (GSH). Moreover, severe DNA damage was shown after treatment with phytol. DNA electrophoresis and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were conducted with pretreatment with the antioxidant N-acetylcysteine (NAC) to evaluate the cause of DNA damage. In NAC-pretreated cells, alleviated damage was confirmed and it supports that phytol induces oxidative stress-mediated DNA damage. In conclusion, phytol exerts the antibacterial property via inducing oxidative stress response in P. aeruginosa. 相似文献
7.
Colvin KM Irie Y Tart CS Urbano R Whitney JC Ryder C Howell PL Wozniak DJ Parsek MR 《Environmental microbiology》2012,14(8):1913-1928
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P.aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides. 相似文献
8.
In this study, the impact of the exopolysaccharides Pel and Psl on the cell surface electron donor-electron acceptor (acid-base) properties and adhesion to quartz sand was investigated by using Pseudomonas aeruginosa PAO1 and its isogenic EPS-mutant strains Δpel, Δpsl and Δpel/Δpsl. The microbial adhesion to hydrocarbon (MATH) test and titration results showed that both Pel and Psl contribute to the surface hydrophobicity of the cell. The results of contact angle measurement, however, showed no correlation with the cell surface hydrophobicity measured by the MATH test and the titration method. Packed-bed column experiments indicated that the exopolysaccharides Pel and Psl are involved in the initial cell attachment to the sand surface and the extent of their impact is dependent on the ionic strength (IS) of the solution. Overall, the Δpel/Δpsl double mutant had the lowest adhesion coefficient to sand compared with the wild-type PAO1, the Δpel mutant and the Δpsl mutant. It is hypothesized that in addition to bacterial surface hydrophobicity and DLVO forces, other factors, eg steric repulsion caused by extracellular macromolecules, and cell surface appendages (flagella and pili) also contribute significantly to the interaction between the cell surface and a sand grain. 相似文献
9.
Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa 总被引:52,自引:21,他引:52
The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained. 相似文献
10.
Melamed Jacob Kocev Alexander Torgov Vladimir Veselovsky Vladimir Brockhausen Inka 《Glycoconjugate journal》2022,39(3):393-411
Glycoconjugate Journal - The Gram-negative bacterium Pseudomonas aeruginosa simultaneously expresses two O-antigenic glycoforms. While the O-specific antigen (OSA) is variable in composition, the... 相似文献
11.
12.
Boo Shan Tseng Wei Zhang Joe J. Harrison Tam P. Quach Jisun Lee Song Jon Penterman Pradeep K. Singh David L. Chopp Aaron I. Packman Matthew R. Parsek 《Environmental microbiology》2013,15(10):2865-2878
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non‐mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose‐dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration. 相似文献
13.
Mild acid hydrolysis of lipopolysaccharide antigens from seven different serotype strains antigen immunotypes nos. 1–7 [in the classification of Fisher, M. W., Devlin, H. B. & Gnabasik, F. J. (1969) J. Bacteriol. 98 , 835–836] of Pseudomonas aeruginosa gave polysaccharide components of high molecular weight, which were isolated by gel filtration and dialysis. These components were examined by ultracentrifugation at equilibrium with the Rayleigh interferometric optical system. The partial specific volumes were calculated from densities obtained by using a mechanical oscillator. The average molecular weights (M n, M w, and M z) were calculated and compared to evaluate the polydispersity of the polysaccharides. The nonideality was investigated by varying the rotor speed, the height of the solution column, and the concentrations of the polysaccharide fractions. The molar masses were found to range from 14,000 for the polysaccharide from immunotype two to 24,000 for that from immunotype one, when extrapolated to zero rotor speed and solution column height. 相似文献
14.
Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection 总被引:5,自引:0,他引:5
Gyetko MR Sud S Kendall T Fuller JA Newstead MW Standiford TJ 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(3):1513-1519
Leukocytes express both urokinase-type plasminogen activator (uPA) and the urokinase receptor (uPAR, CD87). Evidence in vitro has implicated uPAR as a modulator of beta2 integrin function, particularly CR3 (CD11b/CD18, Mac-1). Pseudomonas aeruginosa infection has been demonstrated to recruit neutrophils to the pulmonary parenchyma by a beta2 integrin-dependent mechanism. We demonstrate that mice deficient in uPAR (uPAR-/-) have profoundly diminished neutrophil recruitment in response to P. aeruginosa pneumonia compared with wild-type (WT) mice. The requirement for uPAR in neutrophil recruitment is independent of the serine protease uPA, as neutrophil recruitment in uPA-/- mice is indistinguishable from recruitment in WT mice. uPAR-/- mice have impaired clearance of P. aeruginosa compared with WT mice, as demonstrated by CFU and comparative histology. WT mice have diminished neutrophil recruitment to the lung when an anti-CD11b mAb is given before inoculation with the pathogen, while recruitment of uPAR-/- neutrophils is unaffected. We conclude that uPAR is required for the recruitment of neutrophils to the lung in response to P. aeruginosa pneumonia and that this requirement is independent of uPA. Further, we show that uPAR and CR3 act by a common mechanism during neutrophil recruitment to the lung in response to P. aeruginosa. This is the first report of a requirement for uPAR during cellular recruitment in vivo against a clinically relevant pathogen. 相似文献
15.
Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonitis in immunocompromised patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However, the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the ΔlasB mutant in mouse lungs. The ΔlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung infection in SP-A+/+ mice. However, the ΔlasB mutant was as virulent as PAO1 in the lungs of SP-A-/- mice. Detailed analysis showed that the ΔlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization. In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of ΔlasB mutant bacteria more efficiently than the isogenic wild-type PAO1. The ΔlasB mutant was found to have a severely reduced ability to degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin. 相似文献
16.
Yu Sun Jeong Sunghyun Huh Ji Cheol Kim Ji Ye Park ChaeEun Lee Min-Sik Kim JaeHyung Koo Yoe-Sik Bae 《BMB reports》2022,55(8):395
Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gram-negative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gai-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system. 相似文献
17.
18.
Shiwei Wang Matthew R. Parsek Daniel J. Wozniak Luyan Z. Ma 《Environmental microbiology》2013,15(8):2238-2253
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings. 相似文献
19.
Hare NJ Scott NE Shin EH Connolly AM Larsen MR Palmisano G Cordwell SJ 《Proteomics》2011,11(15):3056-3069
Pseudomonas aeruginosa is a ubiquitous pathogen most typically associated with wound infections, but also the main cause of mortality in patients suffering from cystic fibrosis (CF). The ability to adapt to oxidative stress associated with host immune defense may be one mechanism by which P. aeruginosa establishes infection in the cystic fibrosis lung and eventually out-competes other pathogenic bacteria to persist into chronic infection. We utilized a proteomics approach to identify the proteins associated with the oxidative stress response of P. aeruginosa PAO1 to hydrogen peroxide and superoxide-inducing paraquat. 2-DE and MS allowed for the identification of 59 and 58 protein spots that were statistically significantly altered following H(2) O(2) and paraquat treatment, respectively. We observed a unique mass and pI pattern for alkylhydroperoxide reductase C (AhpC) that was replicated by hypothetical protein PA3529 following treatment with 10?mM H(2) O(2) . AhpC belongs to the 2-Cys peroxiredoxin family and is a redox enzyme responsible for removing peroxides in bacterial cells. MS analysis showed that PA3529 was altered by the formation of a dimer via a disulfide bond in a manner analogous to that known for AhpC, and by cysteine overoxidation to Cys-sulfonic acid (SO(3) H) postoxidative stress. PA3529 is therefore a functional AhpC paralog expressed under H(2) O(2) stress. Following paraquat-induced oxidative stress, we also observed the overabundance and likely oxidative modification of a second hypothetical antioxidant protein (PA3450) that shares sequence similarity with 1-Cys peroxiredoxins. Other induced proteins included known oxidative stress proteins (superoxide dismutase and catalase), as well as those involved in iron acquisition (siderophore biosynthesis and receptor proteins FpvA and FptA) and hypothetical proteins, including others predicted to be antioxidants (PA0848). These data suggest that P. aeruginosa contains a plethora of novel antioxidant proteins that contribute to its increased resistance against oxidative stress. 相似文献
20.
Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification. 相似文献