首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an increasing interest in the use of lanthanides in medicine. However, the mechanism of their accumulation in cells is not well understood. Lanthanide cations are similar to ferric ions with regard to transferrin binding, suggesting transferrin-receptor mediated transport is possible; however, this has not yet been confirmed. In order to clarify this mechanism, we investigated the binding of Yb3+ to apotransferrin by UV-Vis spectroscopy and stopped-flow spectrophotometry, and found that Yb3+ binds to apotransferrin at the specific iron sites in the presence of bicarbonate. The apparent binding constants of these sites showed that the affinity of Yb3+ is lower than that of Fe3+and binding of Yb3+ in the N-lobe is kinetically favored while the C-lobe is thermodynamically favored. The first Yb3+ bound to the C-lobe quantitatively with a Yb/apotransferrin molar ratio of < 1, whereas the binding to the other site is weaker and approaches completeness by a higher molar ratio only. As demonstrated by 1H NMR spectra, Yb3+ binding disturbed the conformation of apotransferrin in a manner similar to Fe3+. Flow cytometric studies on the uptake of fluorescein isothiocyanate labeled Yb3+-bound transferrin species by K562 cells showed that they bind to the cell receptors. Laser scanning confocal microscopic studies with fluorescein isothiocyanate labeled Yb3+-bound transferrin and propidium iodide labeled DNA and RNA in cells indicated that the Yb3+ entered the cells. The Yb3+-transferrin complex inhibited the uptake of the fluorescein labeled ferric-saturated transferrin (Fe2-transferrin) complex into K562 cells. The results demonstrate that the complex of Yb3+-transferrin complex was recognized by the transferrin receptor and that the transferrin-receptor-mediated mechanism is a possible pathway for Yb3+ accumulation in cells.  相似文献   

2.
An obligatory role for barbonate (or other synergistic anions) in the specific binding of Fe3+ by transferrin has been a point of controversy for two decades. There are an equal number of confirmatory and negative reports of specific Fe3+-transferrin binary complexes. A criticism of previous studies is the use of only one synthetic route, and limited product testing. This study reports the development of several preparative routes aimed at the formation of a specific Fe3+-transferrin complex, and the characterization of the products by spectrophotometry and chemical reactivity. The preparative routes described include: (a) displacement of carbonate from Fe3+-transferrin-CO32- at low pH followed by removal of CO2 by several techniques; (b) addition of FeCl3 to apotransferrin under CO2-free conditions; (c) oxidation of Fe2+ in the presence of apotransferrin under CO2-free conditions; (d) reaction of apotransferrin with nonsubstituting Fe3+ complexes in the absence of CO2; and (e) attempts to displace anions from weak Fe3+-transferrin-anion complexes. The product were examined with regard to their visible spectra, and their examined with regard to their visible spectra, and their reactivity with: (a) NaHCO3, (b) Fe3+-nitrilotriacetic acid in NaHCO3, and (c) citrate. The results are compared with the characteristics of Fe3+-transferrin-anion complexes and nonspecific Fe3+, transferrin mixtures. The data indicate that in the absence of synergistic anions the affinity of the specific metal binding sites of transfe-rin for Fe3+ is so low as to not compete favorably with hydrolytic polymerization and nonspecific binding effects.  相似文献   

3.
Effects of protease inhibitors on liver regeneration   总被引:2,自引:0,他引:2  
The oxidation of Fe2+ to Fe3+ by oxygen at pH 7.45 is a first order reaction with a 25 minute half life. In the presence of apotransferrin the oxidation rate is greatly enhanced and Fe3+-transferrin is formed. The apotransferrin mediated reaction reaches 50% completion in one minute; it does not follow simple first order kinetics. Iron-saturated transferrin does not exhibit the rate enhancement effect suggesting that the specific metal binding sites are the loci of the iron oxidation. Addition of H2O2, an agent which rapidly oxidizes Fe2+ to Fe3+, during the reaction of Fe2+ with apotransferrin greatly decreases the yield of Fe3+-transferrin. It is postulated that the basis of the rate enhancement effect is the binding of Fe2+ to the metal binding site of the transferrin molecule, followed by a rapid oxidation of the iron to the trivalent form.  相似文献   

4.
The chemotherapeutic agent, bleomycin, forms a 1:1complex with both Fe(III) and Fe(II). The rate offerric ion transfer from bleomycin toapotransferrin is rather slow. However, when ascorbate was added toFe(III)-bleomycin priorto exposure to apotransferrin, the transfer rate was markedly increased. Ascorbatereadilyreduces Fe(III)-bleomycin to Fe(II)-bleomycin. A second order rate constant of 2.4 mM min wasestimated for this reaction. Fe(II)-bleomycinimmediately combines with O 2 , generating the so-called'acti-vatedbleomycin' complex. The data suggest that a reduced form of iron-bleomycin more readilydonatesits iron ion to apotransferrin. Reoxidation of ferrous ions, andFe(III)-transferrin formation occur rapidly.  相似文献   

5.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

6.
Uteroferrin, a purple-colored, iron-containing glycoprotein, purified from the uterine fluid of progesterone-stimulated pigs, owes its natural purple color to a broad absorption band centered at 545 nm. Laser excitation within the visible absorption band of uteroferrin results in an intense resonance Raman spectrum which bears a striking resemblance to that reported for Fe(III)-transferrin, the iron transport protein of serum. Excitation profiles for the four resonance-enhanced bands of uteroferrin were obtained from 4579 A to 6741 A, using lines from Ar+ and Kr+ lasers. Each of the profiles have maxima near 545 nm. The spectral similarities of uteroferrin and Fe(III)-transferrin lead to the belief that the Fe(III) binding sites of the two proteins must be, at least in some respects, quite similar. In particular, it is concluded that, as in Fe(III)-transferrin, the metal binding site of uteroferrin contains a tyrosine ligand and that the visible absorption spectrum of uteroferrin results from a phenolate to Fe(III) charge transfer.  相似文献   

7.
The sedimentation behavior of 125I-labeled gastrin has been studied as a function of Fe3+ ion concentration and pH. Both sedimentation velocity and sedimentation equilibrium experiments indicated that high-molecular-weight Fe3+-gastrin complexes were formed at pH 5.0 and pH 7.4. Self-association of gastrin alone was observed at pH values below 5.0. 125I-labeled gastrin bound to human serum apotransferrin at pH 7.4. Scatchard analysis of the gastrin-apotransferrin complex gave a Kd of approximately 6.4 microM at 37 degrees C, with two binding sites per molecule of apotransferrin. No significant binding of gastrin to diferric transferrin was observed under the same conditions. The binding of gastrin to apotransferrin was inhibited by NaCl. The results are consistent with the hypothesis that gastrin and transferrin act synergistically in the uptake of dietary iron by the gastrointestinal tract.  相似文献   

8.
Interaction of lectins with a detergent-solubilized ATPase from eel electric organ was studied. Concanavalin A, which binds to alpha-mannosides, altered the rate of enzyme migration in agar and inhibited the formation of an antigen-antibody precipitate: other lectins had no such effects. Concanavalin A similar amounts partially inhibited (Na+ + K+)-ATPase; this inhibition was reversible by alpha-methylglucoside. There was no corresponding effect of concanavalin A on the potassium p-nitrophenylphosphatase. Concanavalin A also did not interfere with ouabain binding. Thus, concanavalin A binds to an antigenic region also involved in Na+ and/or ATP binding, but does not interact with a K+ site.  相似文献   

9.
The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.  相似文献   

10.
Binding of vanadate to human serum transferrin   总被引:1,自引:0,他引:1  
Human serum transferrin specifically and reversibly binds 2 equiv of vanadate at the two metal-binding sites of the protein. The vanadium(V)-transferrin complex can be formed either by the addition of vanadate to apotransferrin or by the air oxidation of the vanadyl(IV)-transferrin complex. The formation of the vanadium complex can be blocked by loading the apotransferrin with iron(III), and bound vanadium can be displaced from the protein by the subsequent addition of either gallium(III) or iron(III). The binding constant for the second equiv of vanadate is 10(6.5) in 0.1 M hepes, pH 7.4 at 25 degrees C. The binding constant for the first equiv of vanadate is probably very similar, although no quantitative value could be determined. Although transferrin reacts with the vanadate anion, studies on the transferrin model compound ethylenebis(o-hydroxyphenylglycine) indicate that at pH 9.5, the vanadium is binding at the metal-binding site as a dioxovanadium(V) cation coordinated to two phenolic residues at each binding site. This bound cation appears to be protonated over the pH range 9.5-6.5, as shown by changes in the difference uv spectrum of the transferrin complex, to produce an oxohydroxo species. Further decreases in the pH lead to dissociation of the vanadium-transferrin complex.  相似文献   

11.
The characteristics of the carbohydrate chain on the rat cerebral cortical substance P (SP) receptor were studied. We examined the effects of pretreatment with three lectins (concanavalin A, wheat germ agglutinin, lens culinaris agglutinin) on the [3H]SP binding activities. Each lectin can bind to the specific carbohydrate chain. Among these lectins, only concanavalin A inhibited specific [3H]SP binding by reducing the affinity of the binding sites. The inhibitory action of concanavalin A was dose-dependent and diminished by the addition of alpha-methyl-D-mannoside. The present results suggest that the rat cortical SP receptor has either a biantennary complex-type or a high mannose-type of carbohydrate chain, and that the carbohydrate chain is implicated in the SP binding activity of the SP receptor system.  相似文献   

12.
The Mg2+ATPase activity of liver plasma membranes decreases markedly with increasing temperature above 30 degrees. This negative temperature dependency is counteracted by the binding of wheat germ agglutinin, concanavalin A, or Ricinus communis agglutinin (at concentrations greater than or equal 0.5 mg/ml) to membranes prior to assay of the enzyme. With one of these lectins bound, the enzyme has a single energy of activation between 20 degrees and 45 degrees. The binding of dimeric succinyl concanavalin A, soybean agglutinin, fucose-binding lectin from Lotus tetragonolobus, or the leucoagglutinin from Phaseolus vulgaris does not alter the temperature dependency of the enzyme. The latter two lectins, however, do prevent the concanavalin A-induced activation of the enzyme at 37 degrees. At saturating substrate concentrations, the enzyme is not inhibited by any of the lectins tested over a wide range of concentrations. Cytochalasin B and colchicine separately or in combination have little influence on the lectin-induced enhancement of enzyme activity. Chlorpromazine and vinblastine sulfate each partially prevent the activation and in combination do so completely. Treatment of the membranes with the detergent Lubrol-PX or phospholipase A prevents activation of the enzyme by concanavalin A. The results are consistent with a restriction by the lectin of an environment which is normally too disordered for maximal enzyme activity above 30 degrees.  相似文献   

13.
The heterogeneity of tumor cell populations according to binding of lectins from lentil (LcL), wheat germs (WGA), peanut (PNA) and concanavalin A was investigated on a model of murine Nemeth-Kellner lymphoma (NK/Ly) and leukemia L-1210. Bound lectins were detected by indirect immunochemical method using home obtained polyclonal antilectin antibodies and immunogold silver staining (IGSS) technique. Significant differences in binding of Con A were revealed between NK/Ly (67% Con A+) and L-1210 (7.2% Con A+) cells, while the differences in binding of other lectins with both types of tumor cells were not significant. A relatively high percentage of PNA+ cells was registered that can indicate a high degree of desialization of membrane glycoproteins.  相似文献   

14.
A number of dietary lectins have been shown to resist proteolytic digestion. These lectins interact with the small intestinal mucosa causing structural and functional changes. Concomitant to these changes, bacterial overgrowth was reported and a possible interaction between lectins and bacteria in the small intestine was postulated. The aim of this study was to investigate the effect of various lectins on adherence of Salmonella typhimurium to both isolated small intestinal enterocytes and ligated intestinal loops. Isolated intestinal cells or ligated intestinal loops were incubated with [3H] adenine-S. typhimurium in the presence or absence of concanavalin A, phytohemagglutinin, peanut agglutinin, and wheat germ agglutinin. Only concanavalin A promoted the adherence of various strains of nonfimbriated S. typhimurium to isolated viable intestinal cells. Other lectins showed no effect on the adherence. In situ studies showed that bacterial binding was increased in concanavalin A-treated intestinal loops, supporting the significance of the experiments in vitro. These data suggest that lectins may act by promoting bacterial adherence to the small intestine, thereby facilitating colonization and infection, and leading to bacterial overgrowth.  相似文献   

15.
We have examined the agglutination of Sindbis virus and of chick and hamster cells infected with Sindbis virus by two of the plant lectins, concanavalin A and Ricinus communis agglutinin. Both lectins agglutinate the virus by binding to the polysaccharide chains of the envelope glycoproteins. Both chick and hamster cells exhibit increased agglutination by the lectins after infection by Sindbis virus. In the case of chick cells infected with Sindbis virus, this increase in agglutinability occurs between 3 and 5 h after infection. Infected and mock-infected cells bind the same amount of (3)H-labeled concanavalin A, which suggests that the increase in agglutination after infection is due to rearrangements at the cell surface rather than to insertion of new lectin binding sites per se.  相似文献   

16.
The three-dimensional structure of demetallized concanavalin A has been determined at 2.5 Å resolution and refined to a crystallographic R-factor of 18%. The lectin activity of concanavalin A requires the binding of both a transition metal ion, generally Mn2+, and a Ca2+ ion in two neighboring sites in close proximity to the carbohydrate binding site. Large structural differences between the native and the metal-free lectin are observed in the metal-binding region and consequently for the residues involved in the specific binding of saccharides. The demetallization invokes a series of conformational changes in the protein backbone, apparently initiated mainly by the loss of the calcium ion. Most of the Mn2+ ligands retain their position, but the Ca2+ binding site is destroyed. The Ala207-Asp208 peptide bond, in the β-strand neighboring the metal-binding sites, undergoes a cis to trans isomerization. The cis conformation for this bond is a highly conserved feature among the leguminous lectins and is critically maintained by the Ca2+ ion in metal-bound concanavalin A. A further and major change adjacent to the isomerized bond is an expansion of the loop containing the monosaccharide ligand residues Leu99 and Tyr100. The dispersion of the ligand residues for the monosaccharide binding site (Asn14, Agr228, Asp208, Leu99, and Tyr100) in metalfree concanavalin A abolishes the lectin's ability to bind saccharides. Since the quaternary structure of legume lectins is essential to their biological role, the tetramer formation was analyzed. In the crystal (pH 5), the metal-free concanavalin A dimers associate into a tetramer that is similar to the native one, but with a drastically reduced number of inter-dimer interactions. This explains the tetramer dissociation into dimers below pH values of 6.5. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Treatment of liver plasma membranes with phospholipase A2 or high doses of concanavalin A enhances the activity of Mg2+ATPase assayed at temperatures greater than 30 degrees C. The effects of the two treatments are not additive. Both the removal of phospholipids and binding of the lectin increase the degree of polarization of fluorescence of the lipid-soluble fluorophores, diphenylhexatriene and beta-parinaric acid, suggesting that decreased lipid fluidity may activate Mg2+-ATPase. In fact modification of lipid fluidity by reconstitution of phospholipase-treated membranes with phosphatidylcholines of defined fatty acid composition or by addition of cis-vaccenic acid showed a strong inverse correlation between Mg2+ATPase activity and lipid fluidity as monitored by fluorescence polarization. However, despite the ability of concanavalin A to nonspecifically order membrane lipid, its effect on Mg2+ATPase is apparently not mediated in this manner because other enzyme-activating lectins such as Ricinus communis agglutinin and wheat germ agglutinin are without effect on lipid fluidity. The facts that lectins of lower valency than tetravalent native concanavalin A such as divalent succinyl concanavalin A are far less effective in activating the enzyme and that paraformaldehyde treatment also activates suggests that cross-linking of membrane proteins is responsible. Hence, the diminution in activity of this membrane enzyme due to the disordering effect of heat in the physiological temperature range can be counteracted by isothermally increasing the order of either membrane lipid or protein.  相似文献   

18.
铽(Ⅲ)与人血清脱铁转铁蛋白结合的荧光光谱研究   总被引:5,自引:0,他引:5  
在pH7.40.1mol/LHepes及室温条件下,使用荧光光谱进行了Tb3+对人血清脱铁转铁蛋白的滴定.结果表明Tb3+与人血清脱铁转铁蛋白结合后,其549nm处的荧光强度增强约105倍.在549nm处Tb3+-脱铁转铁蛋白络合物的摩尔荧光强度是(9.65±0.05)×104mol-1L,Tb3+可占据脱铁转铁蛋白的两个金属离子结合部位,优先占据脱铁转铁蛋白的C端结合部位,条件平衡常数是lgKC=9.96±0.20,lgKN=6.37±0.16.Tb3+与R3+E(RE=Nd、Sm、Eu和Gd)间的线性自由能关系表明稀土离子占据脱铁转铁蛋白的C端结合部位时受离子大小的影响  相似文献   

19.
Legume lectins--a large family of homologous proteins   总被引:27,自引:0,他引:27  
N Sharon  H Lis 《FASEB journal》1990,4(14):3198-3208
More than 70 lectins from leguminous plants belonging to different suborders and tribes have been isolated, mostly from seeds, and characterized to varying degrees. Although they differ in their carbohydrate specificities, they resemble each other in their physicochemical properties. They usually consist of two or four subunits (25-30 kDa), each with one carbohydrate binding site. Interaction with carbohydrates requires tightly bound Ca2+ and Mn2+ (or another transition metal). The primary sequences of more than 15 legume lectins have been established by chemical or molecular genetic techniques. They exhibit remarkable homologies, with a significant number of invariant amino acid residues, among them most of those involved in metal binding. The 3-dimensional structures of the legume lectins are similar, too, and are characterized by a high content of beta-sheets and a lack of alpha-helix. The location of the metal and carbohydrate binding sites, established unequivocally in concanavalin A by high resolution X-ray crystallography, appears to be the same in the other legume lectins. Several of the lectin genes have been cloned and expressed in heterologous systems. This opens the way for the application of molecular genetics to the investigation of the atomic structure of the carbohydrate binding sites of the lectins, and of the relationship between their structure and biological activity. The new approaches may also provide information on the mechanisms that control gene expression in plants and on the role of lectins in nature.  相似文献   

20.
Investigations of metal-substituted human lactoferrins by fluorescence, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy confirm the close similarity between lactoferrin and serum transferrin. As in the case of Fe(III)- and Cu(II)-transferrin, a significant quenching of apolactoferrin's intrinsic fluorescence is caused by the interaction of Fe(III), Cu(II), Cr(III), Mn(III), and Co(III) with specific metal binding sites. Laser excitation of these same metal-lactoferrins produces resonance Raman spectral features at ca. 1605, 1505, 1275, and 1175 cm-1. These bands are characteristic of tyrosinate coordination to the metal ions as has been observed previously for serum transferins and permit the principal absorption band (lambda max between 400 and 465 nm) in each of the metal-lactoferrins to be assigned to charge transfer between the metal ion and tyrosinate ligands. Furthermore, as in serum transferrin the two metal binding sites in lactoferrin can be distinguished by EPR spectroscopy, particularly with the Cr(III)-substituted protein. Only one of the two sites in lactoferrin allows displacement of Cr(III) by Fe(III). Lactoferrin is known to differ from serum transferrin in its enhanced affinity for iron. This is supported by kinetic studies which show that the rate of uptake of Fe(III) from Fe(III)--citrate is 10 times faster for apolactoferrin than for apotransferrin. Furthermore, the more pronounced conformational change which occurs upon metal binding to lactoferrin is corroborated by the production of additional EPR-detectable Cu(II) binding sites in Mn(III)-lactoferrin. The lower pH required for iron removal from lactoferrin causes some permanent change in the protein as judged by altered rates of Fe(III) uptake and altered EPR spectra in the presence of Cu(II). Thus, the common method of producing apolactoferrin by extensive dialysis against citric acid (pH 2) appears to have an adverse effect on the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号