首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exhaustive identification of open reading frames in complete genome sequences is a difficult task. It is possible that important genes are missed. In our efforts to reanalyze the intergenic regions of Mycoplasma genitalium and Mycoplasma pneumoniae, we have newly identified a number of new open reading frames (ORFs) in both M. genitalium and M. pneumoniae. The most significant identification was that of a ribonuclease H enzyme in both species which until now has not been identified or assumed absent and interpreted as such. In this paper we discuss the biological importance of RNase H and its evolutionary implication. We also stress the usefulness of our method for identifying new ORFs by reanalyzing intergenic regions of existing ORFs in complete genome sequences.  相似文献   

3.
为了解广州市儿童呼吸道支原体感染情况,用一条共同的上游引物,二条特异性的下游引物建立的PCR方法能同时扩增MP的691bp和MG的438bp粘附因子基因片段,但不会扩增其他支原体和细菌的DNA。  相似文献   

4.
The Mycoplasma pneumoniae FH strain routinely used in our laboratory for over 25 years as antigen in serological tests, 2 reference M. pneumoniae strains from ATCC (29342 and M129) and 3 isolates of M. pneumoniae obtained in 1995 from pneumonia patients were compared by SDS-PAGE, complement fixation test (CFT) and by Western-immunoblotting against human and rabbit serum samples with high level of mycoplasmal antibodies. On SDS-PAGE all M. pneumoniae strains showed the same number of 23 polypeptides on the gel with identical molecular weights. The same strains on immunoblotting against human and rabbit serum samples showed six bands: 170, 89, 75, 55, 38 and 33 kDa with the strongest antibody staining in 170-(P1 protein) and 89-kDa bands. Because of its known antigenic relationships Mycoplasma genitalium was used for comparison. The pattern of M. genitalium proteins on SDS-PAGE was similar to pattern of M. pneumoniae but distinguishable. On immunoblotting six proteins of M. genitalium (135, 127, 110, 95, 75 and 45 kDa) reacted with human and rabbits immunoglobulins for M. pneumoniae antigens. Furthermore in complement fixation test both antigens, prepared from M. pneumoniae and M. genitalium, reacted as well with human and rabbit immunoglobulins for M. pneumoniae and with rabbit immunoglobulins for M. genitalium. These cross-reactions observed in serological techniques could give false positive results in routine diagnosis of M. pneumoniae infections. In such situations showing on immunoblott of presence in tested serum sample of antibodies to 170- and 89 kDa proteins could confirm M. pneumoniae infection.  相似文献   

5.
Homologous recombination between repeated DNA elements in the genomes of Mycoplasma species has been hypothesized to be a crucial causal factor in sequence variation of antigenic proteins at the bacterial surface. To investigate this notion, studies were initiated to identify and characterize the proteins that form part of the homologous DNA recombination machinery in Mycoplasma pneumoniae as well as Mycoplasma genitalium. Among the most likely participants of this machinery are homologs of the Holliday junction migration motor protein RuvB. In both M. pneumoniae and M. genitalium, genes have been identified that have the capacity to encode RuvB homologs (MPN536 and MG359, respectively). Here, the characteristics of the MPN536- and MG359-encoded proteins (the RuvB proteins from M. pneumoniae strain FH [RuvB(FH)] and M. genitalium [RuvB(Mge)], respectively) are described. Both RuvB(FH) and RuvB(Mge) were found to have ATPase activity and to bind DNA. In addition, both proteins displayed divalent cation- and ATP-dependent DNA helicase activity on partially double-stranded DNA substrates. The helicase activity of RuvB(Mge), however, was significantly lower than that of RuvB(FH). Interestingly, we found RuvB(FH) to be expressed exclusively by subtype 2 strains of M. pneumoniae. In strains belonging to the other major subtype (subtype 1), a version of the protein is expressed (the RuvB protein from M. pneumoniae strain M129 [RuvB(M129)]) that differs from RuvB(FH) in a single amino acid residue (at position 140). In contrast to RuvB(FH), RuvB(M129) displayed only marginal levels of DNA-unwinding activity. These results demonstrate that M. pneumoniae strains (as well as closely related Mycoplasma spp.) can differ significantly in the function of components of their DNA recombination and repair machinery.  相似文献   

6.
DNA methylation is one of the many hypotheses proposed to explain the observed deficiency in CpG dinucleotides in a variety of genomes covering a wide taxonomic distribution. Recent studies challenged the methylation hypothesis on empirical grounds. First, it cannot explain why the Mycoplasma genitalium genome exhibits strong CpG deficiency without DNA methylation. Second, it cannot explain the great variation in CpG deficiency between M. genitalium and M. pneumoniae that also does not have CpG-specific methyltransferase genes. I analyzed the genomic sequences of these Mycoplasma species together with the recently sequenced genomes of M. pulmonis, Ureaplasma urealyticum, and Staphylococcus aureus, and found the results fully compatible with the methylation hypothesis. In particular, I present compelling empirical evidence to support the following scenario. The common ancestor of the three Mycoplasma species has CpG-specific methyltransferases, and has evolved strong CpG deficiency as a result of the specific DNA methylation. Subsequently, this ancestral genome diverged into M. pulmonis and the common ancestor of M. pneumoniae and M. genitalium. M. pulmonis has retained methyltransferases and exhibits the strongest CpG deficiency. The common ancestor lost the methyltransferase gene and then diverged into M. genitalium and M. pneumoniae. M. genitalium and M. pneumoniae, after losing methylation activities, began to regain CpG dinucleotides through random mutation. M. genitalium evolved more slowly than M. pneumoniae, gained relatively fewer CpG dinucleotides, and is more CpG-deficient.  相似文献   

7.
By using the primers designed on the bases of the sequences of the 16S rRNA genes of Mycoplasma pneumoniae and Mycoplasma genitalium, respectively, specific and sensitive in vitro DNA amplification assay system for the detection and discrimination of these two mycoplasmas was established. The detection limit of the assay was 100 cells for M. pneumoniae and 1,000 cells for M. genitalium. Neither other human mycoplasmas nor oral bacteria existing in human saliva showed any cross-reactions with these primers.  相似文献   

8.
It has been demonstrated thatRhinovirus ribonucleic acid (RNA) synthesis was greater inMycoplasma pneumoniae inoculated KB (Human Carcinoma of Nasopharynx) cells than in PPLO-free tissue systems (Milligan III & Fletcher, 1969). In this study,Mycoplasma pneumoniae was grown on glass to eliminate the PPLO medium. However, if PPLO medium was added to theMycoplasma pneumoniae inoculum, stimulation of viral-RNA synthesis was greater than in the presence of PPLO alone. Rhinovirus-RNA synthesis, measured by uridine-3H uptake, in the presence ofMycoplasma pneumoniae andMycoplasma pneumoniae plus medium was enhanced 1.2-fold and 1.4-fold respectively, above virus synthesis in untreated KB cell systems. PPLO medium did not appear to significantly stimulate viral RNA synthesis. However, a 5-fold increase in the concentration of the medium or its components resulted in greater viral RNA replication. The medium components, yeast extract and PPLO broth (Difco), stimulated viral RNA synthesis 4-fold and 2-fold, respectively. Our findings also demonstrated that other components, agar, phenol red, and dextrose, inhibited viral replication, whereas horse serum appeared to have no effect. This work was supported by the Life Sciences Division of the U.S. Army Research Office under contract/grant No. DAHC-20-67C-0122/DAHC 19-69-G-0011.  相似文献   

9.
Cell extracts of the fermentative Mollicutes Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, Mycoplasma gallisepticum S6, Mycoplasma pneumoniae FH, Mycoplasma hyopneumoniae J and M. genitalium G-37, and the non-fermentative Mycoplasma hominis PG-21, Mycoplasma hominis 1620 and Mycoplasma bovigenitalium PG-11 were examined for 39 cytoplasmic enzyme activities associated with the tricarboxylic acid (TCA) cycle, transamination, anaplerotic reactions and other enzyme activities at the pyruvate locus. Malate dehydrogenase (EC 4.2.1.2) was the only TCA-cycle-associated enzyme activity detected and it was found only in the eight Mycoplasma species. Aspartate aminotransferase (EC 2.6.1.1) activity was detected in all Mollicutes tested except M. gallisepticum S6. Malate synthetase (EC 4.1.3.2) activity, in the direction of malate formation, was found in the eight Mycoplasma species, but not in any of the Acholeplasma species. Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was detected in the direction of oxaloacetate (OAA) formation in both Acholeplasma species, but not in any of the Mycoplasma species. Pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), pyruvate dehydrogenase (EC 1.2.4.1) and lactate dehydrogenase (EC 1.1.1.27) activities were found in all ten Mollicutes tested. No activities were detected in any of the ten Mollicutes for aspartase (EC 4.3.1.1), malic enzyme (EC 1.1.1.40), PEP carboxytransphosphorylase (EC 4.1.1.38), PEP carboxykinase (EC 4.1.1.32) or pyruvate orthophosphate dikinase (EC 2.7.9.1). In these TCA-cycle-deficient Mollicutes the pyruvate-OAA locus may be a point of linkage for the carbons of glycolysis, lipid synthesis, nucleic acid synthesis and certain amino acids. CO2 fixation appears obligatory in the Acholeplasma species and either CO2 fixation or malate synthesis appears obligatory in the Mycoplasma species.  相似文献   

10.
Colonies of Mycoplasma pneumoniae and Mycoplasma salivarium grown in PPLO agar were examined by light and electron microscopy. The main objective of the investigation was to attempt in situ fixation and minimize tonic changes in the organisms. Microscopy revealed that both organisms grew both in and upon the agar. The agar and surface growths of M. pneumoniae exhibited similar profiles, whereas those of M. salivarium differed strikingly. Both organisms are highly pleomorphic, but their matrix was denser and appeared more intact than in previously reported profiles. Cells which resemble the commonly reported mycoplasma were occasionally observed. The significance of these discrepant profiles remains unanswered. It is suggested that they may represent aged or osmotically damaged cells.  相似文献   

11.
12.
A highly abundant and heterogeneous small RNA about 205 to 210 bases long named MP200 RNA has been identified in Mycoplasma pneumoniae. It was localized on the genome within a 319-bp-long intergenic space of the pyruvate dehydrogenase (pdh) gene cluster. A database search at the DNA level revealed the highest similarity to a sequence located within the pdh gene cluster of Mycoplasma genitalium that was also shown to be transcribed into two abundant, but smaller RNAs than the ones in Mycoplasma pneumoniae. The RNAs from both M. pneumoniae and M. genitalium have the potential to code for cysteine-rich 29- and 23-amino-acid-long peptides, but so far, these peptides have not been identified experimentally in bacterial protein extracts.  相似文献   

13.
Chandonia JM  Kim SH  Brenner SE 《Proteins》2006,62(2):356-370
At the Berkeley Structural Genomics Center (BSGC), our goal is to obtain a near-complete structural complement of proteins in the minimal organisms Mycoplasma genitalium and M. pneumoniae, two closely related pathogens. Current targets for structure determination have been selected in six major stages, starting with those predicted to be most tractable to high throughput study and likely to yield new structural information. We report on the process used to select these proteins, as well as our target deselection procedure. Target deselection reduces experimental effort by eliminating targets similar to those recently solved by the structural biology community or other centers. We measure the impact of the 69 structures solved at the BSGC as of July 2004 on structure prediction coverage of the M. pneumoniae and M. genitalium proteomes. The number of Mycoplasma proteins for which the fold could first be reliably assigned based on structures solved at the BSGC (24 M. pneumoniae and 21 M. genitalium) is approximately 25% of the total resulting from work at all structural genomics centers and the worldwide structural biology community (94 M. pneumoniae and 86 M. genitalium) during the same period. As the number of structures contributed by the BSGC during that period is less than 1% of the total worldwide output, the benefits of a focused target selection strategy are apparent. If the structures of all current targets were solved, the percentage of M. pneumoniae proteins for which folds could be reliably assigned would increase from approximately 57% (391 of 687) at present to around 80% (550 of 687), and the percentage of the proteome that could be accurately modeled would increase from around 37% (254 of 687) to about 64% (438 of 687). In M. genitalium, the percentage of the proteome that could be structurally annotated based on structures of our remaining targets would rise from 72% (348 of 486) to around 76% (371 of 486), with the percentage of accurately modeled proteins would rise from 50% (243 of 486) to 58% (283 of 486). Sequences and data on experimental progress on our targets are available in the public databases TargetDB and PEPCdb.  相似文献   

14.
The small genome Mollicutes whose DNAs are completely sequenced (Mycoplasma genitalium, Mycoplasma pneumoniae, Mycoplasma pulmonis, and Ureaplasma urealyticum [parvum]) lack a gene (ndk) for the presumably essential nucleoside diphosphate kinase (NDPK). We hypothesized that other activities might replace NDPK activity. We found in M. genitalium G37(T), Mycoplasma pneumoniae FH(T), Mycoplasma fermentans PG18(T), and Mycoplasma capricolum subsp. capricolum Kid(T) that their 6-phosphofructokinases (6-PFKs), phosphoglycerate kinases (PGKs), pyruvate kinases (PKs), and acetate kinases (AKs), besides reactant ADP/ATP, could use other ribo- and deoxyribo-purine and pyrimidine NDPs and NTPs. These activities could compensate for the absence of an orthologous ndk gene in the Mycoplasmataceae. They suggest a metabolically varied and consequential role for unrelated and perhaps unsuspected "replacement" or compensatory enzymes that may confound metabolic prediction. We partially purified and biochemically characterized the PKs, 6-PFKs, PGKs, and AKs from M. capricolum subsp. capricolum Kid(T) and M. fermentans PG18(T).  相似文献   

15.
Abstract Cytadherence and subsequent parasitism of host cells by the human pathogens, Mycoplasma pneumoniae and Mycoplasma genitalium , are mediated by adhesins and adherence-related accessory proteins. In this report we demonstrate the use of transposon Tn 4001 to generate Tn-induced transformants displaying cytadherence-deficient characteristics. Mycoplasma pneumoniae Tn-generated transformant, designated 8R, lacked the high-molecular weight adherence-accessory proteins HMW1/4 and was deficient in hemadsorption and cytadherence capabilities. In transformant 8R, Tn 4001 was not localized in or near the hmw 1 gene or in the upstream adhesin (p30/hmw3) locus, suggesting an alternate site associated with the regulation of hmw 1 gene expression. Sequence analysis identified the transposon insertion site at the crl locus previously reported, although the protein characteristics of transformant 8R differed from the earlier described transformants. The M. genitalium Tn-transformant, designated G26, was also defective in hemadsorption and cytadherence. However, transformant G26 synthesized adhesins P140 and P32 suggesting that Tn 4001 transposed into a new gene or site previously unlinked to cytadherence, namely ORF MG032. This study demonstrates the utility of Tn 4001 mutagenesis for both M. pneumoniae and M. genitalium which, in the latter case, has special relevance in light of the recent complete characterization of its continuous total genomic sequence.  相似文献   

16.
It was demonstrated that a 67 kilodalton (kDa) protein of Mycoplasma pneumoniae is a main cross-reactive antigen with similar molecular weight protein of Mycoplasma genitalium by Western blot analysis using monoclonal antibody to 67 kDa protein of M. pneumoniae and hyperimmune rabbit sera directed against each mycoplasma strain.  相似文献   

17.
A DNA fragment has been isolated from the genome of Mycoplasma pirum by use of a genetic probe derived from the conserved region within the genes for the major adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. A gene encoding an adhesin-like polypeptide was localized, and sequence analysis indicated a G + C content of only 28%, with A- and T-rich codons being preferentially used. A total of 91% of positions 3 were either A or T. The deduced polypeptide is 1,144 amino acids long (126 kDa) and shows 26% identity with the adhesins of M. genitalium and M. pneumoniae. Other features in common with these two membrane proteins include a similar hydropathic profile and a proline-rich C terminus. Antibodies were prepared by using as an immunogen a peptide derived from the C terminus of the M. pirum adhesin-like polypeptide and were found to recognize on immunoblots a 126-kDa polypeptide from an M. pirum cellular extract. The characterization of the adhesin-like gene is a first step toward a better understanding of the mechanisms allowing this human mycoplasma to attach to host cells.  相似文献   

18.
Overlapping genes are defined, in this paper, as a pair of adjacent genes whose coding regions are partly overlapping. We systematically analyzed all overlapping genes in the genomes of two closely related species: Mycoplasma genitalium and Mycoplasma pneumoniae. Careful comparisons were made for homologous genes that are overlapped in one species but not in the other. This comparative analysis allows us to propose a model of how overlapping genes emerged in the course of evolution. It was found that overlapping genes were generated primarily due to the loss of a stop codon in either gene, in many cases, the absence of which resulted in elongation of the 3' end of the gene's coding region. More specifically, the loss of the stop codon took place as a result of the following events: deletion of the stop codon (64.4%), point mutation at the stop codon (4.4%), and frame shift at the end of the coding region (6.7%). Overlapping genes, in a sense, can be thought of as the results of evolutionary pressure to minimize genome size. However, our analysis indicates that many overlapping genes, at least in the genomes of M.genitalium and M.pneumoniae, are due to incidental elongation of the coding regions.  相似文献   

19.
Molecular cloning and sequencing showed that Mycoplasma gallisepticum, like Mycoplasma capricolum, contains both tRNA(UCA) and tRNA(CCA) genes, while Mycoplasma pneumoniae and Mycoplasma genitalium each appear to have only a tRNA(UCA) gene. Therefore, these mycoplasma species contain a tRNA with the anticodon UCA that can translate both UGA and UGG codons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号