首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Two alpha-tubulin genes from the budding yeast Saccharomyces cerevisiae were identified and cloned by cross-species DNA homology. Nucleotide sequencing studies revealed that the two genes, named TUB1 and TUB3, encoded gene products of 447 and 445 amino acids, respectively, that are highly homologous to alpha-tubulins from other species. Comparison of the sequences of the two genes revealed a 19% divergence between the nucleotide sequences and a 10% divergence between the amino acid sequences. Each gene had a single intervening sequence, located at an identical position in codon 9. Cell fractionation studies showed that both gene products were present in yeast microtubules. These two genes, along with the TUB2 beta-tubulin gene, probably encode the entire complement of tubulin in budding yeast cells.  相似文献   

6.
7.
8.
9.
Microtubules in yeasts are essential components of the mitotic and meiotic spindle and are necessary for nuclear movement during cell division and mating. The yeast Saccharomyces cerevisiae has two alpha-tubulin genes, TUB1 and TUB3, either of which alone is sufficient for these processes when present in a high enough copy number. Comparisons of sequences from several species reveals the presence of a variable region near the amino terminus of alpha-tubulin proteins. We perturbed the structure of this region in TUB3 by inserting into it 3, 9, or 17 amino acids and tested the ability of these altered proteins to function as the only alpha-tubulin protein in yeast cells. We found that each of these altered proteins was sufficient on its own for mitotic growth, mating, and methods of yeast. We conclude that this region can tolerate considerable variation without losing any of the highly conserved functions of alpha-tubulin. Our results suggest that variability in this region occurs because it can be tolerated, not because it specifies an important function for the protein.  相似文献   

10.
11.
In chicken, beta-tubulin is encoded by a family of seven genes. We have now isolated and sequenced overlapping cDNA clones corresponding to gene c beta 7 (previously designated c beta 4'), the only chicken beta-tubulin not previously characterized. The inferred amino acid sequence of c beta 7 tubulin is identical with the class I beta-tubulin isotype found in human, mouse and rat. Moreover, c beta 7 is highly expressed in almost all tissue and cell types in chicken, a pattern similar to those of the genes for class I beta-tubulin isotypes in other vertebrates. Comparison of the complete family of chicken beta-tubulin gene sequences reveals that the heterogeneity of beta-tubulin polypeptides encoded in a higher eukaryote is confined to six distinct beta-tubulin isotypes. Five of these are members of evolutionarily conserved isotypic classes (I to V), whereas the sixth represents a divergent erythroid-specific tubulin whose sequence has not been conserved.  相似文献   

12.
13.
Banerjee A 《Biochemistry》1999,38(17):5438-5446
Both alpha- and beta-tubulin exist as numerous isotypic forms that originate from different primary sequences as well as a variety of posttranslational modifications. Recent studies show that tubulin dimers differing in the beta-subunit differ significantly in their subcellular distribution as well as in their functional properties such as assembly, dynamics, conformation, and interaction with antimitotic drugs; however, very little is known about the functional significance of the different alpha-tubulin isoforms and their posttranslational modifications. In an effort to get a better understanding about the alpha-tubulin isoforms, a monoclonal antibody, AYN.6D10, was prepared against the mammalian alpha-tubulin C-terminal sequence Glu-Glu-Gly-Glu-Glu-Tyr. Using an immunoaffinity column, bovine brain tubulin was fractionated into three functionally active alphabeta heterodimers which were identified by immunoblotting with alpha-tubulin-specific antibodies and sequence analysis. Assembly studies in the presence of glycerol and Mg2+ show that one of the fractions, that contains mainly the tyrosinated form of alpha1/2, assembled poorly, while the nontyrosinated form assembled normally. The results indicate that tubulin dimers differing in their alpha-tubulin may differ in their functional properties. Future studies with the isoforms may yield valuable information regarding the role of alpha-tubulin and its posttranslational modifications in regulating microtubule assembly and function in vivo.  相似文献   

14.
The C-terminus of alpha-tubulin undergoes a reversible posttranslational tyrosination/detyrosination. The distributions of the tyrosinated (Tyr) and nontyrosinated (Glu) species during mitosis of cultured cells have been investigated by immunofluorescence using antibodies directed against the C-terminus of either Tyr or Glu tubulin. The distribution of Tyr tubulin differed from that of Glu tubulin at each stage of mitosis; in general, the distribution of Tyr tubulin was similar to that of total tubulin, whereas Glu tubulin had a more restricted distribution. The Glu species was found in half-spindle fibers but was not detected in astral fibers at any stage and was seen in the interzone only during telophase. These results were confirmed by a direct comparison of the distributions of Tyr and Glu tubulin in cells double-labeled with the two antibodies. Evidence for the occurrence of Tyr and Glu tubulin in each class of half-spindle fibers (kinetochore and polar) was obtained from the staining patterns of the two antibodies in cold-treated cells. Immunoblots of extracts prepared from synchronous mitotic cells showed that Glu tubulin was a minor species of the total tubulin in the spindle; no changes in the amount of either Tyr or Glu tubulin were detected at any stage of mitosis. These results show that Tyr tubulin is the major species in the mitotic spindle and is found in all classes of spindle fibers, whereas Glu tubulin is present in small amounts and shows a more restricted distribution. The presence of two biochemically distinct forms of alpha-tubulin in the spindle may be important for spindle function.  相似文献   

15.
During most of the previtellogenic oocyte growth, the follicular epithelium of the lizard Podarcis sicula shows a polymorphic structure, due to the presence of different follicle cells. These include small cells which divide and move from the periphery of the follicle to the oocyte surface, intermediate cells which represent an initial step in the process of cell enlargement, and large pyriform cells engaged in the transport of different materials to the oocyte through intercellular bridges. We have studied, by immunolocalization and immunoblotting, the localization of alpha-tubulin and its acetylated form in different follicle cells and in the oocyte during the main steps of ovarian follicle differentiation. Our results indicate that alpha-tubulin is present in all follicle cells at different stages of ovarian follicle differentiation, while its acetylated form is detectable exclusively in the small proliferating and migrating follicle cells. In pyriform cells, alpha-tubulin is localized around the nucleus, extends to the cell apex, and crosses the zona pellucida into the oocyte cortex. The presence of acetylated tubulin in the small follicle cells may be related to the proliferation and/or migration of these cells. The absence of acetylated tubulin form in the cytoplasm of intermediate and pyriform cells can be related to the colocalization of alpha-tubulin with the keratin cytoskeleton in these cells, as detected by confocal microscopy. We have also identified the colocalization of alpha-tubulin with keratin in the cortical region of the oocyte, in particular when the cortex is engaged in the uptake of the yolk proteins.  相似文献   

16.
The nucleotide sequence of a human alpha-tubulin gene (b alpha 1) is described. This gene is extensively homologous to a rat alpha-tubulin gene in its coding regions, 3'-untranslated region and, indeed, in segments of its largest intron. However, with the exception of three short conserved blocks of homology, the 5' flanking regions of the rat and human genes are unrelated. Hence, these genes each encoding an identical protein are transcribed under the influence of divergent promoters. Blot analyses using RNA from a variety of transformed cells derived from different tissues indicate that expression of the human alpha-tubulin gene is restricted to cells of neurological origin. Among neurological cell types b alpha 1 expression is further restricted to adherent cells that are morphologically differentiated. The data presented suggest that the b alpha 1 gene encodes a prominent neuronal and glial alpha-tubulin and that b alpha 1 expression is a function of the differentiated state of these cells.  相似文献   

17.
18.
Ciliates provide a powerful system to analyze the evolution of duplicated alpha-tubulin genes in the context of single-celled organisms. Genealogical analyses of ciliate alpha-tubulin sequences reveal five apparently recent gene duplications. Comparisons of paralogs in different ciliates implicate differing patterns of substitutions (e.g., ratios of replacement/synonymous nucleotides and radical/conservative amino acids) following duplication. Most substitutions between paralogs in Euplotes crassus, Halteria grandinella and Paramecium tetraurelia are synonymous. In contrast, alpha-tubulin paralogs within Stylonychia lemnae and Chilodonella uncinata are evolving at significantly different rates and have higher ratios of both replacement substitutions to synonymous substitutions and radical amino acid changes to conservative amino acid changes. Moreover, the amino acid substitutions in C. uncinata and S. lemnae paralogs are limited to short stretches that correspond to functionally important regions of the alpha-tubulin protein. The topology of ciliate alpha-tubulin genealogies are inconsistent with taxonomy based on morphology and other molecular markers, which may be due to taxonomic sampling, gene conversion, unequal rates of evolution, or asymmetric patterns of gene duplication and loss.  相似文献   

19.
alpha-Tubulin can be posttranslationally modified in that its COOH-terminal amino acid residue, tyrosine, can be selectively removed and replaced again. This reaction cycle involves two enzymes, tubulin carboxypeptidase and tubulin tyrosine ligase. The functional significance of this unusual modification is unclear. The present study demonstrates that posttranslational tyrosinolation of alpha-tubulin does occur in the parasitic hemoflagellate Trypanosoma brucei brucei and that posttranslational tyrosinolation can be detected in both alpha-tubulin isoforms found in this organism. Trypanosomes contain a number of microtubular structures: the flagellar axoneme; the subpellicular layer of singlet microtubules which are closely associated with the cell membrane; the basal bodies; and a cytoplasmic pool of soluble tubulin. Tyrosinolated alpha-tubulin is present in all these populations. However, immunofluorescence studies demonstrate a distinct localization of tyrosinolated alpha-tubulin within individual microtubules and organelles. This localization is subject to a temporal modulation that correlates strongly with progress of a cell through the cell cycle. Our results indicate that the presence of tyrosinolated alpha-tubulin is a marker for newly formed microtubules.  相似文献   

20.
In this paper we demonstrate that failure to complement between mutations at separate loci can be used to identify genes that encode interacting structural proteins. A mutation (nc33) identified because it failed to complement mutant alleles of the gene encoding the testis-specific beta 2-tubulin of Drosophila melanogaster (B2t) did not map to the B2t locus. We show that this second-site noncomplementing mutation is a missense mutation in alpha-tubulin that results in substitution of methionine in place of valine at amino acid 177. Because alpha- and beta-tubulin form a heterodimer, our results suggest that the genetic interaction, failure to complement, is based on the structural interaction between the protein products of the two genes. Although the nc33 mutation failed to complement a null allele of B2t (B2tn), a deletion of the alpha-tubulin gene to which nc33 mapped complemented B2tn. Thus, the failure to complement appears to require the presence of the altered alpha-tubulin encoded by the nc33 allele, which may act as a structural poison when incorporated into either the tubulin heterodimer or microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号