首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydronephrotic rabbit kidney exhibits elevated basal prostaglandin synthesis and supersensitivity to peptide stimulation of vascular prostaglandin and thromboxane formation. In this study the distribution of the prostaglandin-forming cyclooxygenase in hydronephrotic and contralateral rabbit kidneys following one and four day ureteral obstructions was compared using immunohistofluorescence. No alterasions were detected in the distribution or intensity of cyclooxygenase-positive fluorescence in the renal vasculature in response to ureteral obstructions. However, two significant differences were noted between hydronephrotic and contralateral kidneys in the staining of renal tubules: (a) the intensity of fluorescent staining in cortical and medullary collecting tubules of the hydronephrotic kidney was increased and (b) cyclooxygenase antigenicity appeared in the thin limbs of Henle's loop in the hydronephrotic organ. Although alterations in prostaglandin formation by the renal vasculature have been documented previously, our results indicate that ureteral obstruction also causes increased prostaglandin synthesis by renal tubules.  相似文献   

2.
Regional localization of the exaggerated prostaglandin E2 (PGE2) synthesis caused by hydronephrosis was studied in unilateral ureteral ligated rabbits. The renal distribution of PGE2 production was compared in the hydronephrotic and contralateral kidneys. Basal and bradykinin-stimulated PGE2 synthesis were increased in cortical and medullary slices of the hydronephrotic kidneys. Contralateral (control) cortical slices produced very low levels of PGE2 and were insensitive to stimulation by bradykinin (BK). The hydronephrotic cortex produced 10 times more PGE2 than the contralateral cortex and responded to BK stimulation with increased PGE2 synthesis. Cortical slices from the hydronephrotic kidney exhibited a time-dependent increase in PGE2 release, presumably as a result of new protein synthesis. The division of the hydronephrotic cortex into outer and inner regions revealed that the inner cortex produced more PGE2 than the outer cortex. A similar division of the hydronephrotic medulla showed that the inner medulla produced slightly greater amounts of PGE2 than the outer medulla. The present study demonstrates that hydronephrosis causes increases in prostaglandin synthesis throughout the kidney. We suggest from these results and other studies that a possible explanation for this finding is the involvement of the collecting duct system in this response. The gradient of PGE2 production detected in the cortex may have a very significant role in the control of renal hemodynamics and could provide an explanation for the large decrease in blood flow to the inner cortex caused by indomethacin treatment.  相似文献   

3.
The tissue lipids of isolated, perfused rabbit hearts and hydronephrotic kidneys were labelled with [14C]-arachidonic acid by two different techniques: direct infusion of [14C]-arachidonic acid in a protein free media into the perfused organ (method A), and recirculation of [14C]-arachidonic acid in a solution containing albumin (method B). Autoradiography of the labelled organs demonstrated that method A resulted in selective labelling of arteries and arterioles in both perfused organs as well as glomeruli in the kidney. Labelling with method B resulted in a non-specific radioisotope incorporation in both the vasculature and myocardial cells in the heart; and of the vasculature and renal tubules in the perfused kidneys. Analysis of the tissue lipids shows similar patterns of incorporation of radioactivity between methods A and B.Peptide hormone stimulation (bradykinin) and non-specific noxious stimulation (with transient ischemia) were employed to elicit lipase activation (i.e., release of [14C]-arachidonate) and prostaglandin (PG) synthesis. It was found that in both hearts and hydronephrotic kidneys, the radioactive PG release in response to bradykinin and ischemia was much higher with method A (vascular labelling) than with method B (diffuse labelling) despite the appearance of comparable amounts of bioassayable PG release, thus indicating the sites of PG synthesis in these organs is predominantly localized in the vascular tissue. Furthermore, the radioactive arachidonic acid release in response to bradykinin stimulation in the hydronephrotic kidneys was 3 times higher with method A than with method B, suggesting the predominant sites of hormone specific lipase activation in the renal cortex is also in the vasculature. However, the radioactive arachidonic acid release in response to ischemia was much higher with method B than with method A in both hearts and hydronephrotic kidneys, indicating the sites of non-specific lipase activation in these organs are more diffusely distributed, and present also in the myocardial cells and renal tubules.  相似文献   

4.
We have previously demonstrated that decreased cortical prostaglandin metabolism can contribute significantly to an increase in renal tissue levels and activity of prostaglandin E2 in bilateral ureteral obstruction, a model of acute renal failure. In the present study, we have further investigated whether alterations in prostaglandin metabolism can occur in a nephrotoxic model of acute renal failure. Prostaglandin synthesis, prostaglandin E2 metabolism (measured as both prostaglandin E2-9-ketoreductase and prostaglandin E2-15-hydroxydehydrogenase activity), and tissue concentration of prostaglandin E2 were determined in rabbit kidneys following an intravenous administration of uranyl nitrate (5 mg/kg). No changes in the rates of cortical microsomal prostaglandin E2 and prostaglandin F2 alpha synthesis were noted at the end of 1 and 3 days, while medullary synthesis of prostaglandin E2 fell by 47% after 1 day and 43% after 3 days. Cortical cytosolic prostaglandin E2-9-ketoreductase activity was found to be decreased by 36% and 76% after 1 and 3 days respectively. No significant changes were noted in cortical cytosolic prostaglandin E2-15-hydroxydehydrogenase activity after 3 days. Cortical tissue levels of prostaglandin E2 increased by 500% at the end of 3 days. These data demonstrate that in nephrotoxic acute renal failure, decreased prostaglandin metabolism (i.e., prostaglandin E2-9-ketoreductase activity) can result in increased tissue levels of prostaglandin E2 in the absence of increased prostaglandin synthesis and suggest that alterations in prostaglandin metabolism may be an important regulator of prostaglandin activity in acute renal failure.  相似文献   

5.
Recent evidence suggests that a local reninangiotensin system is operational in the kidney and that it mediates some of the actions of angiotensin II on renal tubules. In this study the ontogeny and renal distribution of the unique precursor to angiotensin II formation, angiotensinogen, was investigated in rats by use of immunohistochemistry, immuno-electron microscopy and non-isotopic hybridization histochemistry. At the light-microscopic level, intense staining for angiotensinogen was found in the proximal convoluted tubules of the cortex, with lighter staining in the straight proximal tubules of the outer stripe. The strongest immunostaining was found in the kidneys of neonatal rats, where glomerular mesangial cells and medullary vascular bundles were also immunopositive. The angiotensinogen content of the kidneys in late gestation embryos and neonates showed the presence of angiotensinogen by day E18 and a peak content in the neonate. Non-isotopic hybridization histochemistry with biotinylated oligodeoxynucleotide probes confirmed the presence of angiotensinogen mRNA expression in the proximal convoluted tubules of the renal cortex. Electron-microscopic immunohisto-chemistry showed staining of relatively few electron-dense structures close to the apical membrane of proximal convoluted tubule cells in the adult kidney. In the neonatal rat kidney, angiotensinogen immunostaining at the electron-microscopic level was found throughout the proximal tubule cells and was markedly stronger than that seen in adult kidney. The presence of angiotensinogen, from embryonic day 18, in the proximal tubules, mesangial cells and vasculature of the kidney suggests multiple potential sites of intrarenal angiotensin II generation with an ontogeny in late gestation.  相似文献   

6.
Compensatory growth of the kidney occurs in response to a partial reduction in renal mass. This compensatory renal growth may be regulated by a circulating renotropic factor. Prostaglandin synthesis has been shown to be increased in kidneys undergoing compensatory renal growth in vivo. In the present study we observed that the addition of rabbit sera obtained after uninephrectomy enhanced DNA synthesis in primary cultures of rabbit kidney cells compared to sera obtained prenephrectomy. The stimulated kidney cells produced more prostaglandin E2 than control cells. Furthermore, the addition of prostaglandin E2 to rabbit kidney cells in the presence of control sera also stimulated DNA synthesis. These results provide further evidence that prostaglandins may participate in the biological events which regulate renal growth in response to a circulating renotropic factor.  相似文献   

7.
Rabbit antiserum has been prepared against the prostaglandin endoperoxide-forming cyclooxygenase (EC 1.14.99.1) purified from sheep vesicular glands. Ouchterlony double diffusion and immunoelectrophoretic analyses indicate that the anti-cyclooxygenase serum is monospecific for the enzyme. The anti-cyclooxygenase serum reacts with both active and inactivated forms of the sheep vesicular gland (SVG) cyclooxygenase. Furthermore, the immune serum precipitates solubilized microsomal cyclooxygenases from each of six other tissues examined, including bovine seminal vesicle, rabbit kidney medulla, guinea pig lung, dog spleen, sheep uterus, and human platelets. Anti-SVG cyclooxygenase serum was used in combination with fluorescein isothiocyanate )FITC)-labeled goat anti-rabbit IgG to detect cyclooxygenases in cryostat sections from rat, rabbit and guinea pig kidneys by immunofluorescence. Highly prominent fluorescence was associated only with the epithelial cells lining the collecting ducts in rabbit and guinea pig kidneys, and except for the nucleus, was uniformly distributed within the interior of these cells. In rat kidney, fluorescence was detected not only in collecting tubules but also in the interstitial cells of the renal papilla. Our results are consistent with the emerging hypothesis that PGE2 produced intrarenally plays a physiological role in natriuresis.  相似文献   

8.
The ipsilateral kidney was removed from a rabbit 48h after unilateral partial renal-vein-constriction and was perfused with Krebs–Henseleit media at 37°C. Hourly administration of a fixed dose of bradykinin to the renal-vein-constricted kidney demonstrated a marked time-dependent increase in the release of bioassayable prostaglandin E2 and thromboxane A2 into the venous effluent as compared with the response of the contralateral control kidney. The renal-vein-constricted kidney produced up to 60 times more prostaglandin E2 in response to bradykinin after 6h of perfusion as compared with the contralateral kidney; thromboxane A2 was not demonstratable in the contralateral kidney. Inhibition of protein synthesis de novo in the perfused renal-vein-constricted kidney with cycloheximide lessened the hormone-stimulated increase in prostaglandin E2 by 94% and in thromboxane A2 by 90% at 6h of perfusion. Covalent acetylation of the renal cyclo-oxygenase by prior oral administration of aspirin to the rabbit inhibited initial bradykinin-stimulated prostaglandin E2 biosynthesis 71% at 1h of perfusion. However, there was total recovery from aspirin in the renal-vein-constricted kidney by 2h of perfusion after bradykinin stimulation. Total cyclo-oxygenase activity as measured by [14C]arachidonate metabolism to labelled prostaglandins by renal cortical and renal medullary microsomal fractions prepared from 6h-perfused kidneys demonstrated that renal-vein-constricted kidney-cortical cyclo-oxygenase activity was significantly greater than the contralateral-kidney-cortical conversion, whereas medullary arachidonate metabolism was comparable in both the renal-vein-constricted kidney and contralateral kidney. These data suggest that perfusion of a renal-vein-constricted kidney initiates a time-dependent induction of synthesis of prostaglandin-producing enzymes, which appear to be primarily localized in the renal cortex. The presence of the synthetic capacity to generate very potent vasodilator and vasoconstrictor prostaglandins in the renal cortex suggests that these substances could mediate or modulate changes in renal vascular resistance in pathological states.  相似文献   

9.
Pax2 has been identified as a key regulatory protein associated with renal developmental malformations. The purpose of this study was to determine whether Pax2 protein expression, and that of other proteins important for normal renal development, is abnormally distributed in the prenatal kidney of the Brachyrrhine (Br) mouse that displays heritable renal hypoplasia. Embryonic 3H1 +/+ and Br/Br mice were collected between E11.0 and E18.0. Routine light microscopy and immunohistochemical analysis using antibodies to Pax2, E-cadherin, fibronectin, laminin, and Type IV collagen were applied to sequential tissue sections. E-cadherin stained consistently in the renal tubules of both normal and mutant animals. Whereas the initial expression of Pax2 corresponded between normal and mutant kidneys, it became progressively limited to the nephrogenic zone in +/+ animals, while distributing erratically in the Br/Br kidney. Fibronectin was not expressed in the normal nephrogenic zone but remained abundantly distributed throughout the Br/Br kidney. Luminin and Type IV collagen staining revealed a deficiency in renal vasculature formation in Br/Br kidneys. Results suggest that initial morphological differentiation occurs normally in the Br kidney but that subsequent nephric formation is associated with abnormal distribution of Pax2 and ECM proteins. (J Histochem Cytochem 49:1081-1097, 2001)  相似文献   

10.
We have previously demonstrated that decreased cortical prostaglandin metabolism can contribute significantly to an increase in renal tissue levels and activity of prostaglandin E2 in bilateral ureteral obstruction, a model of acute renal failure. In the present study, we have further investigated whether alterations in prostaglandin metabolism can occur in a nephrotoxic model of acute renal failure. Prostaglandin synthesis, prostaglandin E2 metabolism (measured as both prostaglandin E2-9-ketoreductase and prostaglandin E2-15-hydroxydehydrogenase activity), and tissue concentration of prostaglandin E2 were determined in rabbit kidneys following an intravenous administration of uranyl nitrate (5 mg/kg). No changes in the rates of cortical microsomal prostaglandin E2 and prostaglandin F synthesis were noted at the end of 1 and 3 days, while medullary synthesis of prostaglandin E2 fell by 47% after 1 day and 43% after 3 days. Cortical cytosolic prostaglandin E2-9-ketoreductase activity was found to be decreased by 36% and 76% after 1 and 3 days respectively. No significant changes were noted in cortical cytosolic prostaglandin E2-15-hydroxydehydrogenase activity after 3 days. Cortical tissue levels of prostaglandin E2 increased by 500% at the end of 3 days. These data demonstrate that in nephrotoxic acute renal failure, decreased prostaglandin metabolism (i.e., prostaglandin E2-9-ketoreductase activity) can result in increased tissue levels of prostaglandin E2 in the absence of increased prostaglandin synthesis and suggest that alterations in prostaglandin metabolism may be an important regulator of prostaglandin activity in acute renal failure.  相似文献   

11.
To gain insight into the role of prostanoids in human kidney function, we examined the distribution of cyclooxygenase (COX) 1 and COX-2 by immunofluorescence and immunohistochemistry in human kidneys from adults of various age groups. COX-1 was detected in the collecting ducts, thin loops of Henle and portions of the renal vasculature. COX-2 was detected in the renal vasculature, medullary interstitial cells, and the macula densa. In addition, COX-2 immunoreactivity was noted in afferent arteries and the macula densa of the renal cortex and was more evident in the kidneys of older adults.  相似文献   

12.
The present study evaluated the regional release of cyclooxygenase products 4 h following 20 Gy gamma irradiation. Thoracic shielding reduced the radiation-induced increase in immunoreactive thromboxane B2 (iTxB2) excretion to control levels while abdominal shielding partially attenuated the altered excretion of this cyclooxygenase product. To assess the role the kidneys play in the radiation-induced increase in iTxB2 excretion, an in situ isolated perfused rat kidney model was developed. The excretion rate of iTxB2 from irradiated isolated perfused kidneys was not significantly different from sham-irradiated perfused kidneys. Radiation exposure did alter renal cyclooxygenase product release in that the excretion of immunoreactive prostaglandin E2 (iPG2) and immunoreactive 6-keto-PGF1 alpha was significantly increased (P less than 0.05) in irradiated isolated perfused kidneys. These data show that radiation-induced increases in iTxB2 excretion are primarily due to altered extrarenal synthesis and/or metabolism of this arachidonate metabolite.  相似文献   

13.
The process of renal inflammation was examined using the partial renal vein constricted rabbit kidney (RVC) as a model. Forty eight hours of partial renal vein constriction in the rabbit was associated with an increase in prostaglandin (PG) and thromboxane (Tx) production. The perfused RVC kidney showed an enhanced time-dependent increase in PG and Tx production in response to bradykinin stimulation when compared with the unlatered contralateral (CLK) or normal kidney. At 6 hrs of perfusion bradykinin stimulation lateral (CLK) or normal kidney. At 6 hrs of perfusion bradykinin stimulation released 2950±350 ng PGE2, 61±15 ng TxB2 from the RVC, and 225±85 ng PGE2 and undetectable TxB2 from the CLK. Histological examination of the RVC cortex showed an increase in fibroblast-like cells, a modest increase in the interstitial space and an appearance of macrophages and lymphocytes not seen in the normal of CLK. Endotoxin has been reported to stimulate macrophages in culture to produce PGE2 and TxB2. Endotoxin (100 ng)_stimulation of the perfused RVC kidney caused an immediate, followed by a chronically increasing, release of PGs and Tx. Two hours after endotoxin injection 50 ml of effluent fromt the RVC contained 1450±107 ng PGE2 and 15.0±4.5 ng TxB2. Other models of renal inflammation (e.g., the hydronephrotic kidney, chronic glomerulonephritis) also show the histological appearance of macrophages. In addition, hydronephrotic kidneys undergo fibroblast proliferation and changes in arachidonic acid metabolism similar to what we observed in the RVC. This work suggests that the inflammatory process (mononuclear cell infiltration), fibroblast-like cell proliferation, and accompanying changes in arachidonate metabolism) is common among different forms of renal injury.  相似文献   

14.
Rabbit antiserum has been prepared against the prostaglandin endoperoxide-forming cyclooxygenase (EC 1.14.99.1) purified from sheep vesicular glands. Ouchterlony doùble diffusion and immunoelectrophoretic analyses indicate that the anti-cyclooxygenase serum is monospecific for the enzyme. The anti-cyclooxygenase serum reacts with both active and inactivated forms of the sheep vesicular gland (SVG) cyclooxygenase. Furthermore, the immune serum precipitates solubilized microsomal cyclooxygenase from each of six other tissues examined, including bovine seminal vesicles, rabbit kidney medulla, guinea pig lung, dog spleen, sheep uterus, and human platelets.Anti-SVG cyclooxygenase serum was used in combination with fluoresence isothiocyanate (FITC)-labelled goat anti-rabbit IgG to detect cyclooxygenase in cryostat sections from rat, rabbit and guinea pig kidneys by immunofluorescence. Highly prominent fluorescence was associated only with the epithelial cells lining the collecting ducts in rabbit and guinea pig kidneys, and except for the nucleus, was uniformly distributed within the interior of these cells. In rat kidney, fluorescence was detected not only in collecting tubules but also in the interstitial cells of the renal papilla. Our results are consistent with the emerging hypothesis that PGE2 produced intrarenally plays a physiological role in natriuresis.  相似文献   

15.
To examine the role of the renal vascular receptor in the control of renin secretion in the rat, a denervated, nonfiltering kidney model (DNFK) was developed. The left kidney was subjected to a 2-hr period of total renal ischemia followed by ureteral ligation and section Denervation was accomplished by stripping all visible nerves and painting the renal vessels with 5% phenol. Forty-eight hours later lissamine green dye was injected iv and failed to appear in either the cortical or medullary tubules, indicating that glomerular filtration had ceased. Histological study of these kidneys revealed diffuse tubular necrosis with extensive intratubular cast formation. Norepinephrine content of the DNFK was reduced 91% compared to the contralateral normal kidney (P less than 0.001). In another group of anesthetized rats with a single DNFK, 15 min of suprarenal aortic constriction (SAC) increased plasma renin activity (PRA) from 3.4 +/- 0.6 to 11.5 +/- 1.6 ng AI/ml/hr; in a time control series, PRA was unchanged. To exclude the influence of adrenal catecholamines in this response, bilateral adrenalectomy was performed in a separate group of animals with a DNFK. In this series, SAC also markedly increased PRA. The present data indicate that in the rat the macula densa, the renal nerves, and adrenal catecholamines were not essential for the hyperreninemia induced by a reduction in renal perfusion pressure.  相似文献   

16.
Human urotensin-II (U-II) is a cyclic 11-amino-acid residue peptide with a wide range of vasoactive properties dependent on the anatomic site and the species studied. The purpose of this study was to determine the localization of human U-II in normal human kidneys and in renal carcinoma. Normal human kidneys (n=11) and eight cases of clear-cell carcinoma were immunostained with a polyclonal antibody to human U-II. In normal human kidneys, U-II was mostly present in the epithelial cells of tubules and ducts, with greater intensity in the distal convoluted tubules. Moderate U-II immunoreactivity was seen in the endothelial cells of renal capillaries, but only focal immunoreactivity was found in the endothelial cells of the glomeruli. No staining was found in the veins. All tumors expressed moderate U-II immunoreactivity in the cancer cells and vasculature. Here we demonstrate abundant expression of U-II in normal human kidneys and renal carcinoma. These findings suggest that the vasoactive and growth-mediator peptide U-II may contribute to the pathophysiology of the human renal system.  相似文献   

17.
Ischemia remains the most common cause of acute kidney injury (AKI). Decreased intercellular adhesion and alterations in adhesion molecules may contribute to the loss of renal function observed in AKI. In the present study, we evaluated the distribution of adhesion molecules in the human kidney and analyzed their expression in human and experimental AKI. Specimens of human kidneys obtained from patients with and without AKI were stained for the cell adhesion molecules E-cadherin, N-cadherin and β-catenin. Experimental AKI in rats was induced by renal artery clamping. Immunostaining and immunoblotting were carried out for E-cadherin, N-cadherin and β-catenin. Proximal tubule cells from opossum kidneys (OKs) were used to analyze the effect of chemical hypoxia (ATP depletion) in vitro. In the adult human kidney, N-cadherin was expressed in proximal tubules, while E-cadherin was expressed in other nephron segments. β-Catenin was expressed in both proximal and distal tubules. In human AKI and in ischemic rat kidneys, N-cadherin immunostaining was depleted from proximal tubules. There was no change in E-cadherin or β-catenin. In vitro, OK cells expressed N-cadherin only in the presence of collagen, and ATP depletion led to a depletion of N-cadherin. Collagen IV staining was reduced in ischemic rat kidneys compared to controls. The results of the study suggest that N-cadherin may play a significant role in human and experimental AKI.  相似文献   

18.
W C Chang  H H Tai 《Life sciences》1984,34(13):1269-1280
The effects of aging on the prostacyclin and thromboxane biosynthesis and prostaglandin catabolic enzyme activity in rat kidney were investigated. The prostacyclin biosynthesis, using arachidonic acid as substrate, was the greatest in young kidneys (2 months old) and then progressively decreased in mature (12 months old) and old (24 months old) kidneys, while thromboxane biosynthetic activity showed no significant change as a function of age. When prostaglandin H2 was used as substrate, the prostacyclin and thromboxane biosynthesis showed similar results as when arachidonic acid was used as substrate; the prostacyclin biosynthesis progressively decreased and thromboxane biosynthesis showed no significant change as a function of age. The fatty acid cyclooxygenase in kidney was measured by a specific radioimmunoassay. No significant change in renal fatty acid cyclooxygenase as a function of age was found. Thus, we concluded that the progressive decrease in renal prostacyclin biosynthesis as a function of age is due to a defect in prostacyclin synthetase in aged kidneys. The prostaglandin catabolic enzyme, NAD+-dependent 15-hydroxyprostaglandin dehydrogenase, in kidneys was also investigated. The enzyme activity progressively decreased as a function of age, which suggested a decrease in the metabolism of thromboxane A2 in aged kidneys. The present results, indicating a decrease in renal prostacyclin biosynthesis and renal 15-hydroxyprostaglandin dehydrogenase activity with aging, might contribute to a plausible explanation of the progressive decrease in renal functions in the elderly.  相似文献   

19.
Renal fibrosis and anaemia are two of the most relevant events in chronic kidney disease. Fibrosis is characterized by the accumulation of extracellular matrix proteins in the glomeruli and tubular interstitium. Anaemia is the consequence of a decrease in erythropoietin production in fibrotic kidneys. This work analyses the possibility that the accumulation of abnormal collagens in kidney interstitium could be one of the mechanisms responsible for erythropoietin decreased synthesis. In renal interstitial fibroblast grown on collagen I, erythropoietin mRNA expression and HIF‐2α protein decreased, whereas focal adhesion kinase protein (FAK) phosphorylation and proteasome activity increased, compared to cells grown on collagen IV. Proteasome inhibition or FAK inactivation in cells plated on collagen I restored erythropoietin and HIF‐2α expression. FAK inhibition also decreased the collagen I‐dependent proteasome activation. In a model of tubulointerstitial fibrosis induced by unilateral ureteral obstruction in mice, increased collagen I protein content and an almost complete disappearance of erythropoietin mRNA expression were observed in the ureteral ligated kidney with respect to the contralateral control. Interestingly, erythropoietin synthesis was recovered in obstructed mice treated with proteasome inhibitor. These data suggest that reduced kidney erythropoietin synthesis could be caused by the accumulation of abnormal extracellular matrix proteins.  相似文献   

20.
Increased intrarenal atrial natriuretic peptide (ANP) mRNA expression has been reported in several disorders. To further investigate the action of renal ANP, we need to elucidate the exact site of its alteration in diseased kidneys. ANP mRNA and ANP were detected by in situ hybridization and immunohistochemistry in the kidneys from five normal and five diabetic rats. Renal ANP mRNA in eight normal and nine diabetic rats was measured by RT-PCR with Southern blot hybridization. In normal and diabetic rats, the distribution of ANP mRNA and ANP-like peptide was mainly located in proximal, distal, and collecting tubules. However, diabetic rats had significant enhancement of ANP mRNA and ANP-immunoreactive staining in the proximal straight tubules, medullary thick ascending limbs, and medullary collecting ducts. ANP mRNA in the outer and inner medulla of nine diabetic rats increased 5.5-fold and 3.5-fold, but only 1.8-fold in the renal cortex. This preliminary study showed that ANP mRNA and ANP immunoreactivity in proximal straight tubules, medullary thick ascending limb, and medullary collecting ducts apparently increased in diabetic kidneys. These findings imply that ANP synthesis in these nephrons may involve in adaptations of renal function in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号