首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing evidence demonstrates that protein kinase C betaII (PKCbetaII) promotes colon carcinogenesis. We previously reported that colonic PKCbetaII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCbetaII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCbetaII represses transforming growth factor beta receptor type II (TGFbetaRII) expression and reduces sensitivity to TGF-beta-mediated growth inhibition in intestinal epithelial cells. Transgenic PKCbetaII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFbetaRII expression. Chemopreventive dietary omega-3 fatty acids inhibit colonic PKCbetaII activity in vivo and block PKCbetaII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFbetaRII expression in the colonic epithelium of transgenic PKCbetaII mice. These data indicate that dietary omega-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCbetaII signaling and restoration of TGF-beta responsiveness.  相似文献   

2.
The protein kinase C (PKC) family of serine/threonine protein kinases is a heterogeneous group of enzymes receiving and integrating signals involved in both normal melanocyte biology and melanoma pathology. Alterations in PKC enzyme expression and activation contribute to the malignant phenotype of melanoma in both oncogenic and tumor suppressive roles. Delineating the diverse and often context-dependent functions of PKC enzymes in melanocyte/melanoma biology is key to capitalize on these kinases as drug targets. This review summarizes several of the diverse functions of PKC in melanocyte and melanoma biology with a focus on PKC enzyme regulation and function.  相似文献   

3.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   

4.
The viral src protein kinase, pp60v-src, is a powerful intracellular mitogen which can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how pp60v-src induces proliferation, we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile v-src protein in quiescent, serum-starved tsRSV-transformed NRK cells. The reactivation of pp60v-src, in the presence of exogenous growth factors, triggered a rapid biphasic surge of membrane-associated protein kinase C (PKC) activity. Unlike TPA-stimulated PKC activity, the pp60v-src-induced increase in PKC was readily extracted from membranes by EGTA. The down-regulation of PKC activity in these quiescent cells by prolonged exposure to TPA strongly inhibited the ability of the reactivated v-src protein to stimulate DNA replication in serum-deficient medium, suggesting that PKC plays a role in the initial signal by which the viral enzyme induces the G0 to G1 transition in NRK cells.  相似文献   

5.
6.
近年来,蛋白激酶研究进展较快,本文综述蛋白激酶的种类、结构、细胞定位,讨论几种植物蛋白激酶及其与信号转导的关系。  相似文献   

7.
Quiescent 3T3 cells grown in media containing 4% foetal calf serum showed different responses to insulin and to serum repletion (to 12%). Insulin stimulated protein synthesis within 1 h and this early response was insensitive to actinomycin D. The later insulin response showed progressive sensitivity to actinomycin D. The serum response was slower, not occurring until 1 h, and was inhibited by actinomycin D. Depletion of cell protein kinase C by pre-treatment with phorbol ester caused a total block of the immediate response to insulin but had little effect on the response to serum or the later response to insulin. Acute phorbol ester treatment stimulated protein synthesis.  相似文献   

8.
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex.  相似文献   

9.
There are conflicting data about the effect of the epidermal growth factor (EGF) on protein kinase C (PKC) enzyme activity. The aim of our study was to find out which type of phospholipids [phosphatidylinositol 4,5-bisphosphate P14,5P2 or the other phospholipids-phosphatidylcholine (PC) or phosphatidic acid (PA)] could be the source of 1,2-diacylglycerol (1,2-DAG) in PKC activation. In colon carcinoma cells (HT29) we observed a more than 2-fold increase in the PC pool and at the same time decreased tyrosine kinase activity (50%). With increasing incubation time EGF affects the pools of both phosphatidylinositols and other phospholipids parallel with the activation of the tyrosine kinase activity. EGF increases the activity of PKC in the HT29 cell line and PC could be the source of 1,2-DAG which may stimulate PKC activity.  相似文献   

10.
Murine protein kinase CK2: Gene and oncogene   总被引:26,自引:0,他引:26  
Protein kinase CK2 (casein kinase II) is a serine-threonine protein kinase with a wide range of substrates, many of which are involved in cell cycle regulation. CK2 activity is elevated in a variety of human tumors and we have used a transgenic mouse model to demonstrate that dysregulated expression of CK2 can induce lymphoma. Thus, CK2 fulfills the definition of an oncogene: A mutated, dysregulated, or mis-expressed gene that contributes to cancer in a dominant fashion. CK2 cooperates in transforming cells with other lymphoid oncogenes such as myc and tal-1, and here we show cooperativity with loss of the tumor suppressor gene p53. To understand more about the physiological and pathological role of CK2, we are cloning the murine CK2 cDNA and gene. CK2 will be used to generate transgenic and knockout mice and the regulatory elements for gene expression will be analyzed.  相似文献   

11.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

12.
We have purified from human placenta a low molecular mass substance that inhibits cAMP-dependent protein kinase and activates protein kinase C. This protein kinase regulator was purified in three steps: (1) homogenizing placentas in chloroform/methanol and extracting the regulator into water; (2) eluting a strong anion exchange high performance liquid chromatography (HPLC) column with a quaternary gradient; and (3) eluting a reversed-phase HPLC column with a binary gradient. The regulator was found to be highly purified by HPLC, thin-layer chromatography (TLC) and laser desorption ionization mass spectrometry with a molecular mass of 703 Daltons by the latter procedure. The physical and biochemical properties of this protein kinase regulator suggest that it is a phospholipid but it did not co-elute by HPLC or by TLC with any of the known phospholipid activators of protein kinase C.  相似文献   

13.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

14.
Growth factors, oncogenes, and multistage carcinogenesis   总被引:8,自引:0,他引:8  
This paper presents evidence that the full repertoire of cellular genes involved in the carcinogenic process is several times larger than that of the known list of proto-oncogenes. Furthermore, this repertoire includes genes whose normal function is related to growth stimulation, as well as genes whose normal function is to inhibit growth or induce terminal differentiation. Multistage carcinogenesis probably results from a complex series of changes in both categories of genes. Despite this complexity, carcinogenesis can be conceived in terms of disturbances in biochemical functions that normally control the expression or function of growth factors, receptors, and pathways of signal transduction. Several protein kinases play a central role in the process of signal transduction. Our laboratory has recently isolated cDNA clones for the enzyme protein kinase C (PKC). These clones should be useful for clarifying the role of PKC in growth control and tumor promotion. Finally, the existence of genes whose normal function is to inhibit cell growth provides a rationale for new strategies of cancer prevention and treatment.  相似文献   

15.
Alcoholism is a progressive disorder that involves the amygdala. Mice lacking protein kinase C epsilon (PKCɛ) show reduced ethanol consumption, sensitivity and reward. We therefore investigated whether PKCɛ signaling in the amygdala is involved in ethanol consumption. Local knockdown of PKCɛ in the amygdala reduced ethanol consumption and preference in a limited-access paradigm. Further, mice that are heterozygous for the PKCɛ allele consume less ethanol compared with wild-type mice in this paradigm. These mice have a >50% reduction in the abundance of PKCɛ in the amygdala compared with wild-type mice. We conclude that amygdala PKCɛ is important for ethanol consumption in mice.  相似文献   

16.
In previous studies we have reported that gastrin exerts a trophic effect on rat colonic epithelial cells in vitro. The effect of gastrin appeared to be mediated through a protein kinase C mechanism. In this study, we have characterized the role of protein kinase C in the gastrin-induced stimulation. Gastrin, in a time- and dose-dependent manner, increased protein kinase C translocation from the cytosol to the membrane, an index of enzyme activation. Maximum translocation occurred in 1 to 2 min following exposure to gastrin (10−8 M), before declining back to baseline level within 5 min. Gastrin did not change total protein kinase C activity in the colonic cells. Staurosporine, an inhibitor of protein kinase C, totally abolished the basal as well as the gastrin-stimulated activity of protein kinase C. The tumor promoter phorbol 12-myristate 13-acetate also stimulated colonic epithelial protein kinase C. However, prolonged treatment of cells with phorbol inhibited their subsequent response to gastrin stimulation. The response to gastrin was also prevented by the gastrin receptor antagonist proglumide. These observations suggest that protein kinase C mediates the stimulatory effect of gastrin on colonic epithelial cells, possibly through a receptor mechanism.  相似文献   

17.
We have explored the hypothesis that changes in the in vitro assay conditions alter both the extent of endogenous phosphorylation of B-50 protein in synaptosomal plasma membrane (SPM) and also the ability of the neuropeptide, ACTH-(1–24) to inhibit the phosphorylation of this protein. B-50 phosphorylation is influenced by preincubation, pH and ionic strength. ACTH-(1–24)-induced inhibition of B-50 phosphorylation varies with ionic strength and SPM protein concentration. Reduction of the buffer ionic strength and the SPM protein concentration enhances the ability of ACTH-(1–24) to inhibit B-50 phosphorylation. Furthermore, loss of ACTH-(1–24) by adsorption to plastic pipettes and test tubes reduces the peptide concentration in the assay. Addition of a low concentration of bovine serum albumin (BSA) essentially eliminates this loss without affecting the extent of phosphate incorporation into B-50. These data provide an explanation for the relatively high (and variable) IC50 values for ACTH-(1–24)-induced inhibition of B-50 phosphorylation reported in the literature. Further, these data suggest that in vitro assay conditions must be carefully investigated before modulation of protein phosphorylation can adequately be studied.A preliminary report of these findings was presented at the 1986 Society for Neuroscience Annual Meeting in Washington, D.C.  相似文献   

18.
A calcium-sensitive, phospholipid-dependent protein kinase (protein kinase C) and its three isozymes were purified from rat heart cytosolic fractions utilizing a rapid purification method. The purified protein kinase C enzyme showed a single polypeptide band of 80 KDa on SDS-polyacrylamide gel electrophoresis, and was totally dependent on the presence of Ca2+ and phospholipid for activity. Diacylglycerol was also found to stimulate enzymatic activity. Autophosphorylation of the purified PKC showed an 80 KDa polypeptide. The identity of the purified protein was also verified with monoclonal antibodies specific for PKC. Further fractionation of the purified PKC on a hydroxylapatite column yielded three distinct peaks of enzyme activity, corresponding to type I, II and III based on similar chromatographic behaviour as the rat brain enzyme. All three forms were entirely Ca2– and phosphatidylserine dependent. Type II was found to be the most abundant. Type I was found to be highly unstable. PKC activity studies demonstrate that types II and III isozymic forms are different with respect to their sensitivity to Ca2+.Abbreviations PKC Protein Kinase C - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - Km Michaelis constant - NBT Nitro-Blue Tetrazolium - BCIP 5-Bromo-4-Chloro-3-Indolyl Phosphate  相似文献   

19.
Transmission of extra cellular signals across biological membranes results in the generation of lipid metabolites which in turn influence specific cellular events such as cell growth or differentiation. Many of these lipid messengers can activate protein kinase C (PKC) isozymes of which one function is to perpetuate the extracellular signals to the nucleus by phosphorylating other targets proteins. We have engineered mammalian cell lines to identify and evaluate activators and inhibitors of PKC-dependent and independent signal transduction pathways. The A31 mouse fibroblast cell line, has been stably transfected with a construct containing a triplet repeat of the TPA response element (TRE) upstream of a thymidine kinase promoter fused to the human growth hormone (hGH) gene. A31 cells containing this reporter construct exhibit significant increases in hGH secretion following stimulation by phorbol esters or other mitogens. The levels of hGH secretion are modulated in this system using different pharmacological agents. We demonstrate that this assay can be used to identify specific and general inhibitors as well as activators of the signal transduction pathway mediated by PKC isozymes. (Mol Cell Biochem141: 129–134, 1994)  相似文献   

20.
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号