首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cat's claw creeper, Dolichandra unguis-cati (Bignoniaceae), a perennial woody vine native to tropical America, is a target for biological control in Australia and South Africa. The cat's claw creeper leaf-tying moth Hypocosmia pyrochroma (Lepidoptera: Pyralidae) from tropical South America was released as a biological control agent for cat's claw creeper in Australia from 2007 to 2010. A total of 2,277 adults, 837 pupae and 77,250 larvae were released at 40 sites in Queensland and New South Wales. Releases were made mostly in open fields (85%), and at limited sites (15%) in insect-proof cages erected over naturally occurring cat's claw creeper infestations in the field. Sampling was conducted annually in spring and autumn to monitor the establishment and dispersal of Hpyrochroma. Establishment of Hpyrochroma was first noticed in 2012 at three release sites and since then the number of established sites has increased to 80 in 2020. Establishment was evident on both ‘short-pod’ and ‘long-pod’ forms of cat's claw creeper and was more widespread in sites where releases were made within insect-proof field cages (50%) than in sites with open field releases (9%). The moth was active from late spring to late autumn with peak larval activity in late summer. To date, all field establishments have been in areas predicted by a CLIMEX model as climatically suitable but restricted mostly to riparian environment (93% of establishment), where the moth has continued to spread from 1.5 to 23 km from release sites. In contrast, there is the only limited establishment and spread in non-riparian corridors, highlighting the role of microclimate (riparian) as a limiting factor for establishment and spread. Future efforts will focus on redistribution of the agent to river/creek systems where the moth is currently not present.  相似文献   

2.
In classical weed biological control, assessing weed response to simulated herbivory is one option to assist in the prioritization of available agents and prediction of their potential efficacy. Previously reported simulated herbivory studies suggested that a specialist herbivore in the leaf-feeding guild is desirable as an effective biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed that is currently a target for biological control. In this study, we tested (i) whether the results from glasshouse-based simulated herbivory can be used to prioritise potential biological control agents by evaluating the impact of a leaf-sucking tingid bug Carvalhotingis visenda (Drake & Hambleton) (Hemiptera: Tingidae) in quarantine; and (ii) the likely effectiveness of low- and high-densities of the leaf-sucking tingid after its release in the field. The results suggest that a single generation of C. visenda has the potential to reduce leaf chlorophyll content significantly, resulting in reduced plant height and leaf biomass. However, the impact of one generation of tingid herbivory on below-ground plant components, including the roots and tuber size and biomass, were not significant. These findings are consistent with results obtained from a simulated herbivory trial, highlighting the potential role of simulated herbivory studies in agent prioritisation.  相似文献   

3.
The potential of the leaf beetle Charidotis auroguttata as a biocontrol agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed in Australia, and risk to non-target plants was evaluated under quarantine conditions. In no-choice tests, C. auroguttata adults and larvae fed on many plant species across different families, but egg to adult development occurred only on the target weed. However, when neonate larvae from the target weed were transferred onto Myoporum boninense australe (Myoporaceae), a non-target native plant, 11.7% completed development, as compared to 95% of larvae that completed development on the target weed. Larval development on this non-target species also took twice as long as on the target weed. No larvae completed development on other test plants. In choice tests, leaf area consumption by adults and larvae was significantly more on the target weed than on other plants, and oviposition occurred only on the target weed. In the no-choice demography trials, adults laid eggs from the second week after emergence on the target weed, with an average of 0.286 eggs/female/day, resulting in an 18-fold increase in the adult population over 16 weeks. On My. boninense australe adult survival remained high, but oviposition commenced only from the 10th week after emergence with an average of 0.023 eggs/female/day, and none of the eggs developed into adults. In the choice demography trials, oviposition on the target weed was evident from the fourth week onwards, while on the non-target plant oviposition commenced only from the 14th week. Only 10% of total adults and 11.3% of total eggs were found on the non-target plant, and none of these eggs developed into adults. Although the biocontrol agent can ‘spill-over’ from the target weed to the non-target native plant and cause adult feeding damage, the non-target plant could not sustain a viable insect population on its own. This agent was not approved for field release in Australia due to perceived risk to non-target species.  相似文献   

4.
ABSTRACT

Prickly acacia, Vachellia nilotica ssp. indica (Benth.) Kyal. & Boatwr, is a significant weed of northern Australia and has been a target of weed biological control in Australia since the 1980s. Following native range surveys in India, the scale insect Anomalococcus indicus Ayyar was identified as the most promising agent and was imported into Australia for further research. A. indicus is a major pest of prickly acacia on the Indian subcontinent, where it causes shoot tip dieback and plant death. Despite field observations suggesting the species was specific to V. nilotica, A. indicus completed development on 17 of the 84 non-target plant species tested during no-choice host specificity trials under quarantine conditions. Of these, Acacia falcata, V. bidwillii, V. sutherlandii and Neptunia major supported high numbers of mature females in all replicates. All of these species were utilised in choice trials. Combined risk scores indicate that V. sutherlandii, N. major and A. falcata may be attacked in the field. Due to the limited ability of scale insects to disperse, only those non-target species that occur on the Mitchell grass downs (i.e. V. sutherlandii) are considered to be at risk. Nevertheless, in view of the disparity between quarantine test results and the observed field host specificity of A. indicus in India, field trials are currently being conducted in India using Australian native species on which complete development has occurred. The future of A. indicus as a biological control agent for prickly acacia in Australia will be determined once results from these field trials are known.  相似文献   

5.
Larvae of the arctiid moth,Pareuchaetes insulata, from Florida fed on the leaves ofChromolaena odorata, a serious composite, alien weed in Natal, South Africa. In starvation test trials using 48 plant species,P. insulata completed its development onC. odorata andAgeratum houstonianum. Subsequent attempts to cultureP. insulata on these two plants was only successful onC. odorata. The biology ofP. insulata is similar to that of two other well studiedPareuchaetes species namelyP. pseudoinsulata andP. aurata aurata. Repeated defoliation ofC. odorata byP. insulata could contribute to its control as has been found withP. pseudoinsulata in Guam.Pareuchaetes insulata has been approved for release as a biological control agent ofC. odorata in South Africa.  相似文献   

6.
The seed‐fly Urophora solstitialis was imported into Australia from southern France. Previous workers had shown that this seed‐fly limited its attack to selected members of the genus Carduus. Host specificity studies revealed that no native Australian plant tested from the family Asteraceae was a suitable host plant. Permission to release the fly was granted, and it was released in three regions of the New South Wales tablelands. The fly underwent a second generation at two of the release sites, and reasons for its failure to do so at the third are suggested. It has successfully established itself in all three regions, having completed a full seasonal cycle in the field.  相似文献   

7.
Host specificity of foreign natural enemies are becoming more and more critical in classical biological control programs, as concerns about potential risk from introduced biocontrol agents have been increasing recently. Understanding the insect's fundamental and ecological host ranges is the first step in determining the potential for introduction of an insect to control invasive plants. Japanese knotweed, Fallopia japonica (Houttuyn) Ronse Decraene (Polygonaceae) is an invasive weed in the United States and Europe. A leaf beetle, Gallerucida bifasciata (Coleoptera: Chrysomelidae) is an important natural enemy attacking this plant in Asia. However, its host range records were ambiguous. This study examined the beetle's host specificity through a set of choice and no-choice tests in the laboratory and field in its native China. Gallerucida bifasciata larvae were able to complete development on seven of 87 plant species in larval development tests, while adults fed and oviposited on 10 plants in no-choice tests. Multiple choice tests showed adults strongly preferred Fallopia japonica, Persicaria perfoliata (L.) H. Gross and Polygonum multiflorum Thunb over all other plants. Open field tests and field surveys further revealed that these three species were in its ecological host range. The results of this study suggest that G. bifasciata is a potential promising agent for control of Japanese knotweed in the United States and Europe, although additional host specificity tests and risk assessment should be completed.  相似文献   

8.
The armored scale Rhizaspidiotus donacis (Leornardi) was evaluated as a potential biological control agent of the invasive reed grass Arundo donax in North America. No-choice tests, native range field surveys and non-target host exposures were used to determine the fundamental host range of the scale collected from Caloma, Spain and Perpignan, France. Thirty-five species, including two genotypes of A. donax and seven ecotypes of Phragmites australis, along with closely related grasses, economic grasses and habitat associates were tested. In quarantine no-choice testing using releases of 200 crawlers per plant, normal development of R. donacis was observed on A. donax and A. formosana, with very limited survival to the adult stage on Spartina alterniflora and Leptochloa spp. In follow-up studies using 1000 crawlers per plant, 10 live adult females were found on Leptochloa virgata, and one adult female on Spartina alterniflora, but average adult female abundance per plant was (2580%) 26-times lower on L. virgata and over (39,090%) 100-times lower on S. alterniflora than on A. donax. Field surveys were conducted at five locations in Spain and France at which A. donax infested with R. donacis, co-occurred with two non-target species of concern and R. donacis was only found on A. donax. Six-month field host exposures in Spain using potted Leptochloa plants entwined with heavily infested A. donax confirmed that R. donacis is specific to Arundo under field conditions. Based on our results, the scale R. donacis appears to be specific to the genus Arundo and is unlikely to harm native or cultivated plants in the Americas.  相似文献   

9.
Mastrus ridens (Horstmann) (Hymenoptera: Ichneumonidae) was imported into quarantine as a potential biocontrol agent for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Mating behaviour of the parasitoid and its effect on progeny sex ratio (as a proportion of males) were studied to help sustain the laboratory culture. Both females and males were reproductively active soon after emergence. Unmated females produced only male progeny, confirming males developed from unfertilized eggs. The proportion of males in a progeny was independent of the copulation period (24–40 s) of the parents. The progeny sex ratios from three parent ratios (f:m 2:1, 1:1 and 1:2) were not significantly different. Females effectively mated only once but males mated frequently in their lifetime. The progeny sex ratios from single females with a known single mating and possible multiple matings (through exposure to two males for 18 days) were not significantly different. However, when males copulated with five virgin females in sequence over a 2 h period, the fifth female produced more males than the preceding four, presumably due to sperm depletion. Results of this study provide data on progeny sex allocation of M. ridens that help to prevent the development of a male-biased sex ratio that could threaten the maintenance of the culture over time.  相似文献   

10.
Abstract:  No-choice host specificity tests were performed on Lixus salsolae Becker (Col., Curculionidae) in a quarantine green house near Montpellier, France. Several varieties of seven species of economic and ornamental plants from six genera of Chenopodiaceae were tested. Adult feeding was observed on almost all test plants and larvae successfully developed on nine of the eleven species/varieties tested. Sex ratio of field-collected overwintering adults was close to 1 : 1. While no-choice tests may indicate a wider host range under field conditions, we no longer consider L. salsolae as a potential biological control agent of Salsola tragus L. (Chenopodiaceae) in North America.  相似文献   

11.
Onion weed, Asphodelus fistulosus L., (Liliaceae) a weed of Mediterranean and Middle Eastern origin is widespread in southern Australia where it invades pastures making them unsuitable for grazing. A program of research is underway to discover natural enemies of this plant and to study their possible role in the biological control of onion weed. A rust fungus Puccinia barbeyi (Roum.) Magnus has been found to severely attack A. fistulosus . Observations on the biology of the rust confirmed that it is monoecious and microcyclic and multiplied essentially by aecial and telial stages, although occasionally urediniospores also appeared among teliospores. Several members of the Liliaceae exposed to the aeciospores of the rust remained unattacked indicating that it is most probably specific to Asphodelus spp. and thus its potential for the biological control of A. fistulosus in Australia should be studied further.  相似文献   

12.
Tecoma stans (Bignoniaceae), is an evergreen shrub that has a wide natural distribution in the tropical and subtropical parts of the western hemisphere. This shrub is native to Mexico and the southern regions of the USA. This weed is widely distributed in South Africa and neighbouring countries. As part of the biological control initiative, a leafmining fly, Pseudonapomyza sp. (Diptera: Agromyzidae), was imported into South Africa, and was subsequently studied as a potential biological control agent for T. stans. During no-choice tests involving 46 plant species in 16 families, Pseudonapomyza sp. only oviposited and developed on T. stans. Neither oviposition nor larval development was recorded on the closely related and indigenous plant species. When six plant species in the Bignoniaceae family were exposed to Pseudonapomyza sp. during multi-choice tests, oviposition and larval development only occurred on T. stans. It was concluded that Pseudonapomyza sp. was sufficiently host-specific to be released against T. stans in South Africa. Pseudonapomyza sp. also displayed very promising biological attributes that could enhance its effectiveness to control T. stans.  相似文献   

13.
Light brown apple moth, Epiphyas postvittana (Walker), is a newly invasive pest in California. Habrobracon gelechiae Ashmead is an indigenous North American ectoparasitoid of lepidopterans. Using E. postvittana as the host, we determined H. gelechiae host stage preference for oviposition and suitability for larval growth: the parasitoid attacked second to fifth instars, but preferred older (third to fifth) host larvae for oviposition, laying more eggs per clutch on the largest (fifth instar). Offspring survival was better on larger (third to fifth instars) hosts. Adult survival and fecundity and immature temperature development were studied at three key temperatures. At 12°C, H. gelechiae failed to oviposit. At 22 and 30°C, H. gelechiae had, respectively, egg to adult developmental times of 15.4 and 8.7 days, adult female survival of 54.8 and 27.2 days, lifetime parasitism of 39.9 and 21.8 hosts and 181 and 151 eggs per female, an intrinsic rate of increase of 0.107 and 0.165, and mean generation time 30.7 and 18.9 days. We studied intraguild interactions with the endoparasitoid Meteorus ictericus Nees, and found that H. gelechiae did not discriminate against hosts that were parasitised by M. ictericus. Neither the paralysing venom injected by H. gelechiae or the presence of the ectoparasitoid's eggs or larvae arrested M. ictericus development. We also conducted a field release of H. gelechiae on two plant species commonly infested by E. postvittana and showed that H. gelechiae was able to locate and attack moth larvae on both hosts.  相似文献   

14.
Dyer’s woad, Isatis tinctoria, a plant of Eurasian origin is a problematic weed in western North America against which a classical biological weed control programme was initiated in 2004. Three European insect species were selected as candidate agents to control this invasive species, including the root‐mining weevil Aulacobaris fallax. To determine its suitability as an agent, the biology and host specificity of A. fallax were studied in outdoor plots and in the field between 2004 and 2006 in its native European range. Aulacobaris fallax is a univoltine species that lays its eggs from March to August into leaf stalks and roots of dyer’s woad. Larvae mine and pupate in the roots and adults emerge from August to October. Up to 62% of the dyer’s woad plants at the field sites investigated were attacked by this weevil. In no‐choice host‐specificity tests, A. fallax attacked 16 out of 39 species and varieties within the Family Brassicaceae. Twelve of these are native to North America. In subsequent multiple‐choice tests, seven species, all native to North America, suffered a similar level of attack as dyer’s woad, while none of the European species were attacked. Our results demonstrate the importance of including test plant species that have not co‐evolved with the respective candidate agent. In sum, we conclude that the risk of non‐target effects is too high for A. fallax to be considered as a biological control agent for dyer’s woad in the United States.  相似文献   

15.
Dichrorampha odorata (Lepidoptera: Tortricidae) is a moth from Jamaica whose larvae bore into, and kill, the shoot tips of the invasive alien plant, Chromolaena odorata (L.) King and Robinson (Asteraceae). This study reports aspects of the biology of D. odorata, and also determined the host specificity (larval and adult no-choice trials) of the moth. Adults were short lived (ranging from 2 to 7 days), with females laying a mean of 15.4 eggs. Eggs took 9 days to hatch, larvae 20–23 days to develop and the pupal stage lasted 11–12 days, giving an overall lifecycle period of 41–45 days. Larval no-choice tests using 34 asteraceous test species indicated that only C. odorata could sustain complete development of D. odorata to adulthood, although there was slight initial boring 14 test species (plus chromolaena). Results from the adult nochoice trials, in which seven test-plant species were exposed to D. odorata, were consistent with those from larval trials, with larval damage, pupae and adults of D. odorata recorded from only C. odorata. This confirmed that only C. odorata is a suitable host for D. odorata in South Africa. Permission has subsequently been granted for the release of D. odorata in South Africa, thus making it the first shoot-tip attacking agent to be released against C. odorata. It is hoped that in the field, high levels of damage by the moth will reduce the height and therefore competitiveness of C. odorata, thereby contributing to the success of biological control of this plant.  相似文献   

16.
D. A. McLaren 《BioControl》1992,37(4):641-648
Larvae of the mothCochylis atricapitana (Stephens) are monophagous leaf, crown, stem or bud borers of ragwort,Senecio jacobaea L. (Asteraceae). In the present investigation, aspects of the life cycle ofC. atricapitana were determined. Moths ofC. atricapitana lay an average of 158 eggs/female with as many as 355 eggs being laid by a single female. The majority of eggs are laid individually along the primary and secondary veins on the underside of ragwort leaves. Egg incubation ranges from 4.2 days at 30°C to 14.4 days at 15°C. At a constant 23°C under a 16 hour photoperiod,C. atricapitana takes approximately 40 days to complete a generation. Caterpillars make their way to young, actively growing ragwort shoots or buds, and begin mining into the plant tissue, boring into the leaf, crown, stem or bud.C. atricapitana has five larval instars and enters diapause as a final instar larva. In southern Victoria, moths ofC. atricapitana fly from late September through to the beginning of February. Adults emerge after overwintering towards the end of spring or beginning of summer.C. atricapitana has established at two sites while larvae, or signs of damage have been observed at approximately 52% of release sites.   相似文献   

17.
Abstract  Melaleuca quinquenervia (Cav.) S.T. Blake, Australian broad-leaved paperbark, has become a serious weed in southern Florida. Poliopaschia lithochlora (Lower) is a promising candidate as a potential biological control agent, and this study describes laboratory and field observations of the life history of this moth. Eggs are laid in small batches, mainly on the surface of leaves, and larvae are voracious leaf feeders, concealed in tubes that are usually found in small colonies attached to leaves and stems. Larvae move from these tubes to feed on surrounding leaves, and saplings and suckers are frequently defoliated. Prepupae form sealed bulbs in the larval tubes in which they pupate. Adult females are mainly active and oviposit at night. Development from egg to adult occurs in approximately 80 d. Field populations appear to be regulated by several egg and larval parasites. Because this moth severely damages saplings and suckers of M .  quinquenervia , prefers low-lying humid sites, and can be successfully mass reared, it is rated highly for its potential as a biological control agent.  相似文献   

18.
The life history and host range of the herringbone leaf-mining fly Ophiomyia camarae, a potential biological control agent for Lantana spp., were investigated. Eggs were deposited singly on the underside of leaves. Although several eggs can be laid on a single leaf and a maximum of three individual mines were seen on a single leaf, only one pupa per leaf ever developed. The generation time (egg to adult) was about 38 days. Females (mean 14 days) lived longer than males (mean 9 days) and produced about 61 mines. Oviposition and larval development occurred on all five lantana phenotypes tested. Eleven plant species representing six families were tested to determine the host range. Oviposition and larval development occurred on only lantana and another nonnative plant Lippia alba (Verbenaceae), with both species supporting populations over several generations. A CLIMEX model showed that most of the coastal areas of eastern Australia south to 30°16′ S (Coffs Harbour) would be suitable for O. camarae. O. camarae was approved for release in Australia in October 2007 and mines have been observed on plants at numerous field sites along the coast following releases.  相似文献   

19.
The life history and host range of the lantana beetle, Alagoasa extrema, a potential biocontrol agent for Lantana spp. were investigated in a quarantine unit at the Alan Fletcher Research Station, Brisbane, Australia. Adults feed on leaves and females lay batches of about 17 eggs on the soil surface around the stems of plants. The eggs take 16 days to hatch and newly emerged larvae move up the stem to feed on young leaves. Larvae feed for about 23 days and there are three instars. There is a prepupal non-feeding stage that lasts about 12 days and the pupal stage, which occurs in a cocoon in the soil, lasts 16 days. Teneral adults remain in the cocoon for 3 days to harden prior to emergence. Males live for about 151 days while females live for about 127 days. The pre-oviposition period is 19 days. In no-choice larval feeding trials, nine plant species, representing three families, supported development to adult. Three species, Aloysia triphylla, Citharexylum spinosum and Pandorea pandorana were able to support at least two successive generations. These results confirm those reported in South Africa and suggest that A. extrema is not sufficiently specific for release in Australia. Furthermore, it is not recommended for release in any other country which is considering biological control of lantana.  相似文献   

20.
Actinote anteas from Costa Rica was screened as a biological control candidate forChromolaena odorata in South Africa. Preliminary starvation trials suggest thatA. anteas is species specific. There are seven larval instars and the life cycle is completed in 101–169 days. The culture died out after three generations possibly because of incompatibility with the form of the local species ofC. odorata or disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号