首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4 is an integral membrane glycoprotein which is known as the human immunodeficiency virus (HIV) receptor for infection of human cells. The protein is synthesized in the endoplasmic reticulum (ER) and subsequently transported to the cell surface via the Golgi complex. HIV infection of CD4+ cells leads to downmodulation of cell surface CD4, due at least in part to the formation of stable intracellular complexes between CD4 and the HIV type 1 (HIV-1) Env precursor polyprotein gp160. This process "traps" both proteins in the ER, leading to reduced surface expression of CD4 and reduced processing of gp160 to gp120 and gp41. We have recently demonstrated that the presence of the HIV-1-encoded integral membrane protein Vpu can reduce the formation of Env-CD4 complexes, resulting in increased gp160 processing and decreased CD4 stability. We have studied the effect of Vpu on CD4 stability and found that Vpu induces rapid degradation of CD4, reducing the half-life of CD4 from 6 h to 12 min. By using a CD4-binding mutant of gp160, we were able to show that this Vpu-induced degradation of CD4 requires retention of CD4 in the ER, which is normally accomplished through its binding to gp160. The involvement of gp160 in the induction of CD4 degradation is restricted to its function as a CD4 trap, since, in the absence of Env, an ER retention mutant of CD4, as well as wild-type CD4 in cultures treated with brefeldin A, a drug that blocks transport of proteins from the ER, is degraded in the presence of Vpu.  相似文献   

2.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.  相似文献   

3.
Human immunodeficiency virus (HIV) Nef is a membrane-associated protein decreasing surface expression of CD4, CD28, and major histocompatibility complex class I on infected cells. We report that Nef strongly down-modulates surface expression of the beta-chain of the CD8alphabeta receptor by accelerated endocytosis, while CD8 alpha-chain expression is less affected. By mutational analysis of the cytoplasmic tail of the CD8 beta-chain, an FMK amino acid motif was shown to be critical for Nef-induced endocytosis. Although independent of CD4, endocytosis of the CD8 beta-chain was abrogated by the same mutations in Nef that affect CD4 down-regulation, suggesting common molecular interactions. The ability to down-regulate the human CD8 beta-chain was conserved in HIV-1, HIV-2, and simian immunodeficiency virus SIVmac239 Nef and required an intact AP-2 complex. The Nef-mediated internalization of receptors, such as CD4, major histocompatibility complex class I, CD28, and CD8alphabeta, may contribute to the subversion of the host immune system and progression towards AIDS.  相似文献   

4.
The Nef protein of primate lentiviruses is a unique protein that has evolved in several ways to manipulate the biology of an infected cell to support viral replication, immune evasion, pathogenesis, and viral spread. Nef is a small (25- to 34-kDa), myristoylated protein that binds to a collection of cellular factors and acts as an adaptor to generate novel protein interactions to accomplish specific functions. Of the many biological activities attributed to Nef, the reduction of surface levels of the viral receptor (CD4) and antigen-presenting molecules (major histocompatibility complex class I) has been intensely examined; recent evidence demonstrates that Nef utilizes multiple, distinct pathways to affect these proteins. To accomplish this, Nef promotes the formation of multiprotein complexes, recruiting host adaptor proteins to commandeer intracellular vesicular trafficking routes. The altered trafficking of several other host molecules has also been reported, and an emerging theory suggests that Nef generates pleiotrophic effects in the secretory and endocytic pathways that reprogram intracellular protein trafficking and may ultimately provide an efficient platform for viral assembly. This review critically discusses some of the major findings regarding the impact of human immunodeficiency virus type 1 Nef on host protein transport and addresses some emerging directions in this area of human immunodeficiency virus biology.  相似文献   

5.
6.
Recent evidence indicates that the nef gene of human immunodeficiency virus type 1 augments rather than inhibits viral replication in both cell culture and in vivo models. In addition, nef alters various normal cellular processes, including the display of CD4 on the cell surface. However, it remains unknown whether the enhancement of infectivity and the downregulation of CD4 represent linked or independent biologic properties of this single protein. In the present studies, mutational analyses were performed to define structure-function relationships within the Nef protein that mediate these effects. To assess the functional consequences of these mutations, sensitive and reliable assays were developed to quantitate the viral infectivity enhancement and CD4 downregulation functions of Nef. The results indicate that membrane-targeting sequences at the N terminus of Nef are important for both functions of Nef, while certain other conserved regions are dispensable for both functions. A conserved proline-X-X repeat segment in the central core of the protein, which is reminiscent of an SH3-binding domain, is critical for the enhancement of infectivity function but is dispensable for CD4 downregulation. However, the downregulation of CD4 by Nef appears to involve a two-step process requiring the initial dissociation of p56lck from CD4 to permit engagement of the endocytic apparatus by CD4. Together, these findings demonstrate that the infectivity enhancement and CD4 downregulation activities of human immunodeficiency virus type 1 Nef can be dissociated. Thus, these processes may be independent of one another in the viral replication cycle.  相似文献   

7.
The Nef protein of the simian and human immunodeficiency viruses is known to directly bind and downregulate the CD4 receptor. Although the molecular mechanism is well understood, direct binding of Nef and CD4 is difficult to demonstrate and is believed to be of low affinity. Applying nuclear magnetic resonance and fluorescence spectroscopy, we biophysically reevaluated the CD4-Nef complex and found the dissociation constant to be in the submicromolar range. We conclude that additional, so far disregarded residues in the N terminus of Nef are important for interaction with CD4.  相似文献   

8.
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus (HIV) receptor for infection of human host cells. We have recently demonstrated that Vpu, an HIV type 1 (HIV-1) encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. In this report, we describe an in vitro model system that allowed us to define important parameters for Vpu-dependent CD4 degradation. The rate of CD4 decay in rabbit reticulocyte lysate was approximately one-third of that observed previously in tissue culture experiments in the presence of Vpu (40 versus 12 min) and required no other HIV-1 encoded proteins. Degradation was contingent on the presence of microsomal membranes in the assay and the coexpression of Vpu and CD4 in the same membrane compartment. By using the in vitro degradation assay, the effects of specific mutations in CD4, including C-terminal truncations and glycosylation mutants, were analyzed. The results of these experiments indicate that Vpu has the capacity to induce degradation of glycosylated as well as nonglycosylated membrane-associated CD4. Truncation of 13 C-terminal amino acids of CD4 did not affect the ability of Vpu to induce its degradation. However, the removal of 32 amino acids from the C-terminus of CD4 completely abolished sensitivity to Vpu. This suggests that Vpu targets specific sequences in the cytoplasmic domain of CD4 to induce its degradation. We also analyzed the effects of mutations in Vpu on its biological activity in the in vitro CD4 degradation assay. The results of these experiments suggest that sequences critical for this function of Vpu are located in its hydrophilic C-terminal domain.  相似文献   

9.
We have developed an in vitro model to study the influence that human immunodeficiency virus type 1 (HIV-1) may have on the ability of T cells to respond to antigenic challenge. We have examined consequences of HIV-1 gene expression on T-cell activation in antigen-dependent T cells that have stably integrated copies of replication-defective proviral HIV-1. Virus production by HIV-infected, antigen-dependent T cells was induced in response to antigenic stimulation and then decreased as infected cells returned to a state of quiescence. Contrary to the predictions of models proposing that Nef alters signal transduction pathways in T lymphocytes and thereby alters cellular activation, Nef expression in antigen-dependent T-cell clones did not influence their proliferative responses to low or intermediate concentrations of antigen and did not affect other measures of T-cell activation, such as induction of interleukin 2 receptor alpha-chain expression and cytokine production. In addition, we found no evidence for alteration of T-cell responsiveness to antigen by the gag, pol, vif, tat, or rev gene of HIV-1.  相似文献   

10.
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.  相似文献   

11.
12.
13.
J Hua  B R Cullen 《Journal of virology》1997,71(9):6742-6748
Although the Nef proteins encoded by human immunodeficiency virus type 1 (HIV-1) and simian immuno-deficiency virus (SIV) are known to induce the efficient internalization and degradation of cell surface CD4, it remains unclear whether this process involves a direct interaction between Nef and CD4. Here, we report that CD4 downregulation by HIV-1 and SIV Nef requires distinct but overlapping target sites within the CD4 intracytoplasmic domain. In particular, mutation of a glutamic acid residue located at CD4 residue 405 or of arginine and methionine residues located, respectively, at residue 406 and 407 results in a mutant CD4 protein that is efficiently downregulated by HIV-1 Nef but refractory to downregulation by SIV Nef. However, both HIV-1 and SIV Nef require an isoleucine located at residue 410 and the dileucine motif found at CD4 residues 413 and 414. CD4 downregulation induced by the Nef protein encoded by HIV-2 is shown to require a CD4 target sequence that is similar to, but distinct from, that observed with SIV Nef. These data explain the previous finding that the murine CD4 protein, which has an alanine at residue 405, is refractory to downregulation by SIV, but not HIV-1, Nef (J. L. Foster, S.J. Anderson, A. L. B. Frazier, and J. V. Garcia, Virology 201:373-379, 1994). In addition, these observations provide strong genetic support for the hypothesis that the Nef-mediated downregulation of cell surface CD4 requires a direct Nef-CD4 interaction.  相似文献   

14.
T Luo  J R Downing    J V Garcia 《Journal of virology》1997,71(3):2535-2539
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) encodes a 27 to 34 kDa myristoylated protein that induces downregulation of CD4 from the cell surface and enhances virus infectivity. As shown by experiments on SIV-infected adult macaques, Nef is important in pathogenesis and disease progression. In vitro, protein kinase C (PKC) phosphorylates Nef, but the role of phosphorylation in the function and expression of this protein has not yet been determined. Here we show that in HIV type 1-infected cells, phosphorylation of Nef increased 8- to 12-fold after treatment with phorbol myristate acetate and phytohemagglutinin (PMA/PHA). Basal and PMA/PHA-induced phosphorylation occurred on serine residues of Nef and was independent of other HIV proteins. The PMA/PHA-induced phosphorylation of Nef was inhibited by bisindolylmaleimide I, a potent and specific inhibitor of PKC, but was unaffected by H89, an inhibitor of protein kinase A. In contrast, treatment with bisindolylmaleimide I did not affect the basal level of Nef phosphorylation, suggesting two different phosphorylation pathways. A PMA-insensitive CD4 mutant in which three serine residues in the cytoplasmic domain have been replaced by alanines was used to determine whether PMA-induced phosphorylation affects Nef-induced CD4 downregulation. In Nef-expressing cells, treatment with PMA enhanced downregulation of the CD4 serine triple mutant from the cell surface, suggesting that phosphorylation is important for Nef function.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

16.
17.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

18.
19.
Substitution of alanine for cysteine residues of the human immunodeficiency virus type 1 LAI (BRU) and ELI Nef proteins was used to determine pairing of the cysteine residues present in each protein. The results show that under nonreducing conditions, alternative pairing of the cysteines occurs. The preferred pairing of cysteine residues of the LAI and ELI proteins differs. In the experimental system used, viruses carrying the ELI nef allele are found to express Nef proteins which accelerate virus replication. Mutation in critical cysteine residues of the protein reduce the rate of virus replication. In the same system, viruses harboring the LAI nef allele fail to replicate. These observations raise the possibility that differences in the observed biological activity of nef alleles may be attributed, at least in part, to differences in the secondary structure of the proteins.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) causes AIDS dementia complex (ADC) in certain infected individuals. Recent studies have suggested that patients with ADC have an increased incidence of neuronal apoptosis leading to neuronal dropout. Of note, a higher level of the HIV-1 accessory protein Vpr has been detected in the cerebrospinal fluid of AIDS patients with neurological disorders. Moreover, extracellular Vpr has been shown to form ion channels, leading to cell death of cultured rat hippocampal neurons. Based on these previous findings, we first investigated the apoptotic effects of the HIV-1 Vpr protein on the human neuronal precursor NT2 cell line at a range of concentrations. These studies demonstrated that apoptosis induced by both Vpr and the envelope glycoprotein, gp120, occurred in a dose-dependent manner compared to protein treatment with HIV-1 integrase, maltose binding protein (MBP), and MBP-Vpr in the undifferentiated NT2 cells. For mature, differentiated neurons, apoptosis was also induced in a dose-dependent manner by both Vpr and gp120 at concentrations ranging from 1 to 100 ng/ml, as demonstrated by both the terminal deoxynucleotidyltransferase (Tdt)-mediated dUTP-biotin nick end labeling and Annexin V assays for apoptotic cell death. In order to clarify the intracellular pathways and molecular mechanisms involved in Vpr- and gp120-induced apoptosis in the NT2 cell line and differentiated mature human neurons, we then examined the cellular lysates for caspase-8 activity in these studies. Vpr and gp120 treatments exhibited a potent increase in activation of caspase-8 in both mature neurons and undifferentiated NT2 cells. This suggests that Vpr may be exerting selective cytotoxicity in a neuronal precursor cell line and in mature human neurons through the activation of caspase-8. These data represent a characterization of Vpr-induced apoptosis in human neuronal cells, and suggest that extracellular Vpr, along with other lentiviral proteins, may increase neuronal apoptosis in the CNS. Also, identification of the intracellular activation of caspase-8 in Vpr-induced apoptosis of human neuronal cells may lead to therapeutic approaches which can be used to combat HIV-1-induced neuronal apoptosis in AIDS patients with ADC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号