首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

2.
 For the angiosperm dominants of northern California’s mixed evergreen forests, this study compares the display of photosynthetic tissue within leaves and along branches, and examines the correspondence between these morphological attributes and the known environmental tolerances of these species. Measurements were made on both sun and shade saplings of six species: Arbutus m e n z i e s i i (Ericaceae), C h r y s o l e p i s c h r y s o p h y l l a (Fagaceae), L i t h o c a r p u s d e n s i f l o r u s (Fagaceae), Quercus c h r y s o l e p i s (Fagaceae), Quercus w i s l i z e n i i (Fagaceae), and Umbellularia c a l i f o r n i c a (Lauraceae). All species had sclerophyllous leaves with thick epidermal walls, but species differed in leaf specific weight, thickness of mesophyll tissues and in the presence of a hypodermis, crystals, secretory idioblasts, epicuticular deposits, and trichomes. The leaves of Arbutus were 2 – 5 times larger than those of C h r y s o l e p i s, L i t h o c a r p u s and Umbellularia and 4 – 10 times larger than those of both Quercus species. Together with differences in branch architecture, these leaf traits divide the species into groups corresponding to environmental tolerances. Shade-tolerant C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia had longer leaf lifespans and less palisade tissue, leaf area, and crown mass per volume than the intermediate to intolerant Arbutus and Quercus. Having smaller leaves, Quercus branches had more branch mass per leaf area and per palisade volume than other species, whereas Arbutus had less than other species. These differences in display of photosynthetic tissue should contribute to greater growth for Quercus relative to the other species under high light and limited water, for Arbutus under high light and water availability, and for C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia under limiting light levels. Accepted: 22 March 1996  相似文献   

3.
Communal Areas Management Programme for Indigenous Resources (CAMPFIRE) is a long-term programmatic approach to rural development that uses wildlife and other natural resources as a mechanism for promoting devolved rural institutions and improved governance and livelihoods. The cornerstone of CAMPFIRE is the right to manage, use, dispose of, and benefit from these resources. Between 1989 and 2006, CAMPFIRE income, mostly from high valued safari hunting, totalled nearly USD 30 million, of which 52 allocated to sub-district wards and villages for community projects and household benefits. Whilst a number of assumptions underlying the success of CAMPFIRE as an innovative model for CBNRM have yet to be met, CAMPFIRE confirms the concept that devolving responsibility and accountability for natural resource management can be highly effective for the collective and participatory management of such resources. Elephant numbers in CAMPFIRE areas have increased and buffalo numbers are either stable or decreased slightly during the life of the programme. However, offtake quotas for these two species have increased with a concomitant decline in trophy quality. Although the amount of wildlife habitat diminished after 1980, following the commencement of CAMPFIRE the rate of habitat loss slowed down and in some specific instances was even reversed. More recently there has been increased pressure on habitats and other natural resources as a consequence of deterioraa  30 million, of which 52% was allocated to sub-district wards and villages for community projects and household benefits. Whilst a number of assumptions underlying the success of CAMPFIRE as an innovative model for CBNRM have yet to be met, CAMPFIRE confirms the concept that devolving responsibility and accountability for natural resource management can be highly effective for the collective and participatory management of such resources. Elephant numbers in CAMPFIRE areas have increased and buffalo numbers are either stable or decreased slightly during the life of the programme. However, offtake quotas for these two species have increased with a concomitant decline in trophy quality. Although the amount of wildlife habitat diminished after 1980, following the commencement of CAMPFIRE the rate of habitat loss slowed down and in some specific instances was even reversed. More recently there has been increased pressure on habitats and other natural resources as a consequence of deteriorating socio-economic conditions in the country. Where devolution has been successful, promising results have been achieved and the recent acceptance and implementation of direct payments to communities is probably the most significant development since 2000. That this has happened can be attributed to CAMPFIRE enabling communities to maximize their roles within the existing set of rules, and by so doing, allowing these rules to be challenged. Donor (73%) and government (27%) investments into the programme amounted to 35 million during the period 1989 to 2003. Since 2003 however, donor funding has been reduced to <$600,000 over the past 5 years.  相似文献   

4.
Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.  相似文献   

5.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

6.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

7.
The recent worldwide effort to transfer all non‐Australian taxa of Acacia s.l. mostly to the genera Senegalia and Vachellia follows the acceptance of the proposed re‐typification of the genus with an Australian species. The Madagascan species have, as yet, not been included in phylogenetic studies of Acacia s.l. and their position in the new generic classification of Acacia s.l. is therefore still unclear. In this study, plastid DNA sequence data were generated for seven Madagascan species, included in existing matrices for Acacia s.l. and analysed to assess the placement of these species. The results indicate that the Madagascan species are placed either in Senegalia or Vachellia and conform to the morphological characters used to distinguish these genera, despite some taxa having unusual red flowers. New combinations are formalized for Senegalia baronii , S . hildebrandtii , S . kraussiana ssp. madagascariensis , S . menabeensis , S . meridionalis , S . pervillei , S . pervillei ssp. pubescens , S . polhillii , S . sakalava , S . sakalava ssp. hispida , V achellia bellula , V . myrmecophila and V . vigueri . Nomenclatural errors are also corrected for three African taxa and, as such, new combinations are provided for Senegalia fleckii , S . hamulosa and V achellia theronii . © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 288–294.  相似文献   

8.
为了合理利用和保护天敌进行卵形短须螨、双斑长跗萤叶甲和假眼小绿叶蝉的综合防治,用灰色系统分析方法和生态位分析法对合肥地区白毫早茶园3种主要害虫与其捕食性天敌在数量、时间、空间等方面关系进行分析,利用害虫与天敌关系密切指数之和综合评判9种天敌与3种害虫关系密切的前四位天敌。2015年卵形短须螨的前四位天敌是鳞纹肖蛸(5.3079)、三突花蟹蛛(5.1716)、锥腹肖蛸(4.8367)和草间小黑蛛(4.7869);2016年前四位天敌依次是三突花蟹蛛(5.3975)、鳞纹肖蛸(4.9414)、茶色新圆蛛(4.8757)、锥腹肖蛸(4.6815)。对两年结果综合分析,卵形短须螨的前四位天敌依次是三突花蟹蛛(10.5691)、鳞纹肖蛸(10.2493)、茶色新圆蛛(9.6353)和锥腹肖蛸(9.5182)。2015年双斑长跗萤叶甲的前四位天敌依次是锥腹肖蛸(5.6926)、异色瓢虫(5.6976)、八斑球腹蛛(5.5101)和斜纹猫蛛(5.4552);2016年依次是茶色新圆蛛(5.2909)、锥腹肖蛸(5.2710)、鳞纹肖蛸(5.1063)和斜纹猫蛛(5.0703)。对两年结果综合评判,双斑长跗萤叶甲的前四位天敌是锥腹肖蛸(10.9636)、茶色新圆蛛(10.6578)、异色瓢虫(10.7580)和鳞纹肖蛸(10.5437)。2015年假眼小绿叶蝉的前四位天敌依次是锥腹肖蛸(5.3614)、粽管巢蛛(5.2259)、斜纹猫蛛(5.1300)和茶色新圆蛛(4.7472);2016年是锥腹肖蛸(5.2666)、粽管巢蛛(5.2561)、草间小黑蛛(4.9376)和斜纹猫蛛(4.8335)。对两年结果综合评判,假眼小绿叶蝉的前四位天敌依次是锥腹肖蛸(10.6280)、粽管巢蛛(10.4820)、斜纹猫蛛(9.9635)和茶色新圆蛛(8.6137)。该研究结果为白毫早茶园3种害虫防治时合理保护和利用自然界的天敌的种类提供了科学依据。  相似文献   

9.
Species of Grosmannia with Leptographium anamorphs include important forest pathogens and agents of blue stain in timber. They are commonly found in association with forest pests, such as bark beetles. During a survey of ophiostomatoid fungi in eastern parts of Finland and neighboring Russia, species belonging to the genus Grosmannia were isolated from 12 different bark beetle species infesting Picea abies and Pinus sylvestris, the most economically important conifers in the region. Identification of these fungi was based on morphology, DNA sequence comparisons for three gene regions and phylogenetic analyses. A total of ten taxa were identified. These belonged to six different species complexes in Grosmannia. The phylogenetic analyses provided an opportunity to redefine the G. galeiformis-, L. procerum-, L. lundbergii-, G. piceiperda-, G. olivacea- and G. penicillata-complexes, and to consider the species emerging from the survey within the context of these complexes. The species included G. galeiformis, G. olivacea, L. chlamydatum, L. lundbergii, L. truncatum and a novel taxon, described here as L. taigense sp. nov. In addition, species closely related to G. cucullata, G. olivaceapini comb. nov., G. piceiperda and L. procerum were isolated but their identity could not be resolved. The overall results indicate that the diversity of Grosmannia species in the boreal forests remains poorly understood and that further studies are needed to clarify the status of several species or species complexes.  相似文献   

10.
The phylogeny and classification of tribe Aedini are delineated based on a cladistic analysis of 336 characters from eggs, fourth‐instar larvae, pupae, adult females and males, and immature stage habitat coded for 270 exemplar species, including an outgroup of four species from different non‐aedine genera. Analyses of the data set with all multistate characters treated as unordered under implied weights, implemented by TNT version 1.1, with values of the concavity constant K ranging from 7 to 12 each produced a single most parsimonious cladogram (MPC). The MPCs obtained with K values of 7–9 were identical, and that for K = 10 differed only in small changes in the relationships within one subclade. Because values of K < 7 and > 10 produced large changes in the relationships among the taxa, the stability of relationships exemplified by the MPC obtained from the K = 9 analysis is used to interpret the phylogeny and classification of Aedini. Clade support was assessed using parsimony jackknife and symmetric resampling. Overall, the results reinforce the patterns of relationships obtained previously despite differences in the taxa and characters included in the analyses. With two exceptions, all of the groups represented by two or more species were once again recovered as monophyletic taxa. Thus, the monophyly of the following genera and subgenera is corroborated: Aedes, Albuginosus, Armigeres (and its two subgenera), Ayurakitia, Bothaella, Bruceharrisonius, Christophersiomyia, Collessius (and its two subgenera), Dahliana, Danielsia, Dobrotworskyius, Downsiomyia, Edwardsaedes, Finlaya, Georgecraigius (and its two subgenera), Eretmapodites, Geoskusea, Gilesius, Haemagogus (and its two subgenera), Heizmannia (and subgenus Heizmannia), Hopkinsius (and its two subgenera), Howardina, Hulecoeteomyia, Jarnellius, Kenknightia, Lorrainea, Macleaya, Mucidus (and its two subgenera), Neomelaniconion, Ochlerotatus (subgenera Chrysoconops, Culicelsa, Gilesia, Pholeomyia, Protoculex, Rusticoidus and Pseudoskusea), Opifex, Paraedes, Patmarksia, Phagomyia, Pseudarmigeres, Rhinoskusea, Psorophora (and its three subgenera), Rampamyia, Scutomyia, Stegomyia, Tanakaius, Udaya, Vansomerenis, Verrallina (and subgenera Harbachius and Neomacleaya), Zavortinkius and Zeugnomyia. In addition, the monophyly of Tewarius, newly added to the data set, is confirmed. Heizmannia (Mattinglyia) and Verrallina (Verrallina) were found to be paraphyletic with respect to Heizmannia (Heizmannia) and Verrallina (Neomacleaya), respectively. The analyses were repeated with the 14 characters derived from length measurements treated as ordered. Although somewhat different patterns of relationships among the genera and subgenera were found, all were recovered as monophyletic taxa with the sole exception of Dendroskusea stat. nov. Fifteen additional genera, three of which are new, and 12 additional subgenera, 11 of which are new, are proposed for monophyletic clades, and a few lineages represented by a single species, based on tree topology, the principle of equivalent rank, branch support and the number and nature of the characters that support the branches. Acartomyia stat. nov. , Aedimorphus stat. nov. , Cancraedes stat. nov. , Cornetius stat. nov. , Geoskusea stat. nov. , Levua stat. nov. , Lewnielsenius stat. nov. , Rhinoskusea stat. nov. and Sallumia stat. nov., which were previously recognized as subgenera of various genera, are elevated to generic status. Catageiomyia stat. nov. and Polyleptiomyia stat. nov. are resurrected from synonymy with Aedimorphus, and Catatassomyia stat. nov. and Dendroskusea stat. nov. are resurrected from synonymy with Diceromyia. Bifidistylus gen. nov. (type species: Aedes lamborni Edwards) and Elpeytonius gen. nov. (type species: Ochlerotatus apicoannulatus Edwards) are described as new for species previously included in Aedes (Aedimorphus), and Petermattinglyius gen. nov. (type species: Aedes iyengari Edwards) and Pe. (Aglaonotus) subgen. nov. (type species: Aedes whartoni Mattingly) are described as new for species previously included in Aedes (Diceromyia). Four additional subgenera are recognized for species of Ochlerotatus, including Oc. (Culicada) stat. nov. (type species: Culex canadensis Theobald), Oc. (Juppius) subgen. nov. (type species: Grabhamia caballa Theobald), Oc. (Lepidokeneon) subgen. nov. (type species: Aedes spilotus Marks) and Oc. (Woodius) subgen. nov. (type species: Aedes intrudens Dyar), and seven are proposed for species of Stegomyia: St. (Actinothrix) subgen. nov. (type species: Stegomyia edwardsi Barraud), St. (Bohartius) subgen. nov. (type species: Aedes pandani Stone), St. (Heteraspidion) subgen. nov. (type species: Stegomyia annandalei Theobald), St. (Huangmyia) subgen. nov. (type species: Stegomyia mediopunctata Theobald), St. (Mukwaya) subgen. nov. (type species: Stegomyia simpsoni Theobald), St. (Xyele) subgen. nov. (type species: Stegomyia desmotes Giles) and St. (Zoromorphus) subgen. nov. (type species: Aedes futunae Belkin). Due to the unavailability of specimens for study, many species of Stegomyia are without subgeneric placement. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species.  相似文献   

11.
The antifungal activities of volatile phase effects of essential oils from Origanum onites, O. syriacum, O. minutiflorum, O. vulgare, O, marjorana, Thymus vulgaris, T. serpyllum, Rosmarinus officinalis, Salvia officinalis and Micromeria fruticosa were evaluated for their ability to inhibit growth of three vegetative compatibility groups (VCGs) of Verticillium dahliae. Carvacrol was the main component of O. onites, O. minutiflorum and O. vulgare essential oils, while γ-terpinene was the main component of O. syriacum. P-cymene and thymol were the dominant component of T. vulgaris and T. serpyllum. β- thujone and l-camphor were the main component of S. officinalis. Polegone and isomenthone were the dominant components of M. fruticosa essential oil. Based on the in vitro test, the degree of fungistatical effects can be ranked in the following order of inhibition: O. syriacum = O. onites = O. minutiflorum = O. vulgare = T. vulgaris > T. serpyllum > M. fruticosa > S. officinalis = O. marjorana > R. officinalis. The essential oils of S. officinalis, O. marjorana and R. officinalis displayed moderate antifungal activity, that increased with increasing concentrations. Among the VCGs, VCG2A and VCG4B were found to be highly sensitive to the essential oils. The essential oils of O. syriacum, O. onites, O. minutiflorum, O. vulgare and T. vulgaris were the most efficacious, demonstrating strong antifungal activity against all of the tested VCGs of V. dahliae at relatively low concentrations and they could find practical application as natural fungicides in the prevention and protection of plants from V. dahliae infections.  相似文献   

12.
13.
Fifty-two endophytic fungi strains with different colony morphologies were isolated from stems, leaves and roots of Huperzia serrata (Thunb. ex Murray) Trevis. collected from Bawangling Reserve of Hainan Province in southern China. They were identified mainly based on rDNA ITS sequences and phylogenetic analysis. The results showed that all strains belonged to four classes, i.e. Sordariomycetes (92.31%), Dothideomycetes (3.85%), Pezizomycetes (1.92%) and Agaricomycetes (1.92%). Forty-seven strains were identified at the genus level, including Glomerella (Colletotrichum), Hypocrea (Trichoderma), Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus. As to the other five strains, three were identified at the order level and two at the family level, indicating that a great diversity of fungi taxa exists in H. serrata. Most isolated strains belonged to the genus of Glomerella (Colletotrichum) and Hypoxylon, twenty-one from Glomerella and its anamorph Colletotrichum (42.3% of total isolated strains) and ten from Hypoxylon (19.2% of total isolated strains). Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus were reported as endophytic fungi isolated from H. serrata for the first time.  相似文献   

14.
15.
Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification‐rescue system (or modresc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation.  相似文献   

16.
 Phylogenetic relationships of Cytisus and allied genera (Argyrocytisus, Calicotome, Chamaecytisus, Cytisophyllum, and Spartocytisus) were assessed by analysis of sequences of the nrDNA internal transcribed spacer (ITS) and the cpDNA trnL-trnF intergenic spacer. Genera of the Genista-group (Chamaespartium, Echinospartum, Genista, Pterospartum, Spartium, Teline and Ulex) were included to check the position of Cytisus species transferred to Teline. The tree obtained by combining both sets of data indicates that the Genista and Cytisus groups form two separate clades. Cytisus heterochrous and C. tribracteolatus are more closely related to the Cytisus-group, thus their transfer to Teline is not supported by molecular data. Cytisus fontanesii (syn. Chronanthos biflorus) groups with Cytisophyllum sessilifolium and Cytisus heterochrous within the Cytisus-group. Similarly, Argyrocytisus battandieri falls within the Cytisus-group as a well differentiated taxon. All these taxa seem to have early diverged from the Cytisus-group. Their taxonomic rank should be reconsidered to better reflect their phylogenetic separation from Cytisus. On the contrary, Chamaecytisus proliferus and Spartocytisus supranubius enter in the main core of Cytisus, and they should better be included in sections of Cytisus (sect. Tubocytisus and Oreosparton, respectively). Sect. Spartopsis is not monophyletic and the position of several species, currently included in this section, deserves reevaluation: C. arboreus aggregate is closely related to C. villosus (sect. Cytisus) and to Calicotome; C. striatus is closely related to Cytisus sect. Alburnoides; and the position of C. commutatus (incl. C. ingramii) remains unclear. The relationships and positioning of several minor taxa (C. transiens, C. megalanthus, and C. maurus) are also discussed. Received November 22, 2001; accepted March 16, 2002 Published online: October 14, 2002 Addresses of the authors: Paloma Cubas (e-mail: cubas@farm.ucm.es) and Cristina Pardo (e-mail: cpardo@farm.ucm.es), Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, E-28040 Madrid, Spain. Hikmat Tahiri Faculté des Sciences, Université Mohammed V, BP 1014 Rabat, Morocco (e-mail: tahiri@ fsr.ac.ma).  相似文献   

17.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

18.
19.
We used chloroplast DNA restriction site analysis to test hypotheses of relationships of Solarium subgenus Potatoe (including potatoes and pepinos), two other Solanum, Cyphomandra (the tree tomatoes), and Lycopersicon (the tomatoes). Capsicum and Datura were used as outgroups. The results support two main clades among the taxa we studied: 1) Solanum subgenus Potatoe and Lycopersicon; and 2) other Solanum and Cyphomandra. Within the first clade, the following groups were supported: a) sect. Basarthrum and sect. Anarrhichomenum; b) sect. Etuberosum; c) sect. Petota; d) sect. Juglandifolium, including subsect. Lycopersicoides; and e) the genus Lycopersicon. These results, in combination with an analysis of morphological data, advocate the controversial, but previously suggested, treatment of Lycopersicon as congeneric with Solanum in subgenus Potatoe. Thus, the cultivated tomato will be recognized as Solanum lycopersicum L. Solanum chmielewskii and Solanum lycopersicum var. cerasiforme are proposed as new combinations; Solanum neorickii is proposed as a new name for Lycopersicon parviflorum. Our data also suggest that Cyphomandra should be included within Solanum.  相似文献   

20.
Food attraction of the fungivorous nematodes Aphelenchus avenae and Aphelenchoides spp. to seven fungal species (Pyrenochaeta lycopersici, Botrytis cinerea, Rhizoctonia solani strains AG 3 and AG 2‐1, Verticillium dahliae, Pochonia bulbillosa, Mortierella hyalina and Trichoderma harzianum) was determined on agar plates by counting the number of test nematodes present on the mycelium of each fungus 24 h after inoculation. Population growth of A. avenae and Aphelenchoides spp. on five of the seven fungi included in the attraction test (P. lycopersici, R. solani strain AG 3, V. dahliae, P. bulbillosa and T. harzianum) was also determined on agar plates by counting nematode numbers every week during a 6‐week period. A. avenae and Aphelenchoides spp. were attracted to all the fungi tested. A. avenae was preferentially attracted to V. dahliae (P < 0.0001), and Aphelenchoides spp. did not show any preference except for low attraction to R. solani. A. avenae and Aphelenchoides spp. reproduced on all fungal species tested. After 6 weeks of incubation, the highest number of nematodes was found on P. lycopersici and P. bulbillosa, while the lowest number occurred on R. solani for A. avenae and on T. harzianum for Aphelenchoides spp. The suitability of a fungus as a host was not clearly related to the attraction to that fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号