首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of an end-labeled DNA restriction fragment with the nonprotein chromophore of neocarzinostatin induced lesions which, after treatment with endonuclease IV or putrescine, were expressed as site-specific double-strand breaks. Analysis of the termini at cleavage sites in each strand showed that the neocarzinostatin-induced lesions consisted of an apurinic/apyrimidinic site plus a closely opposed break in the complementary strand. The break always occurred opposite the base two positions upstream from the apurinic/apyrimidinic site and had the 3'-phosphate and 5'-aldehyde termini characteristic of neocarzinostatin-induced breaks. This positioning suggests that neocarzinostatin simultaneously attacks two DNA sugars on opposite edges of the minor groove. The sequence specificity for formation of apurinic/apyrimidinic sites with closely opposed breaks reflected that of neocarzinostatin-induced mutagenesis. The potent mutagenicity of these lesions may be attributable to the presence of closely opposed damage in both DNA strands.  相似文献   

2.
Previous studies have revealed bleomycin to be a potent base-substitution mutagen in repackaged phage lambda. In order to assess the role of apurinic/apyrimidinic (AP) sites in bleomycin-induced mutagenesis, bleomycin-damaged lambda DNA was treated with putrescine or endonuclease IV to effect cleavage of bleomycin-induced AP sites. The DNA was then packaged, the phage grown in SOS-induced E. coli, and the frequency of clear-plaque mutants in the progeny was determined. Bleomycin-induced mutagenesis was decreased approx. 2-fold by treating the DNA with putrescine, but was unaffected by endonuclease IV. The results are consistent with the production of bleomycin-induced mutation at certain AP sites having a closely opposed single-strand break, since such sites are cleaved by putrescine but not by endonuclease IV.  相似文献   

3.
Previous studies have revealed bleomycin to be a potent base-substitution mutagen in repackaged phage lambda. In order to assess the role of apurinic/apyrimidinic (AP) sites in bleomycin-induced mutagenesis, bleomycin-damaged lambda DNA was treated with putrescine or endonuclease IV to effect cleavage of bleomycin-induced AP sites. The DNA was then packaged, the phage grown in SOS-induced E. coli, and the frequency of clear-plaque mutants in the progeny was determined. Bleomycin-induced mutagenesis was decreased approx. 2-fold by treating the DNA with putrescine, but was unaffected by endonuclease IV. The results are consistent with the production of bleomycin-induced mutation at certain AP sites having a closely opposed single-strand break, since such sites are cleaved by putrescine but not by endonuclease IV.  相似文献   

4.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
L F Povirk  Y H Han  R J Steighner 《Biochemistry》1989,28(14):5808-5814
In order to examine the structure of bleomycin-induced DNA double-strand breaks, defined-sequence DNA was labeled in each strand at a single restriction site and treated with bleomycin. Various double-stranded fragments resulting from bleomycin-induced double-strand breaks were isolated, denatured, and run on sequencing gels to determine the sites of cleavage in each strand. For virtually every double-strand break, the cleavage site in one strand was a pyrimidine in a G-Py sequence, reflecting a specificity similar to that of bleomycin-induced single-strand cleavage. However, the cleavage site in the complementary strand was seldom a G-Py sequence, and was usually a site where single-strand cleavage was infrequent. When the sequence at the double-strand break was G-Py-Py', the break at Py was usually accompanied by a break at the base directly opposite Py, resulting in blunt ends. When the sequence was G-Py-Pu, the break at Py was usually accompanied by a break at the base opposite Pu, resulting in single-base 5' extensions. Double-strand breaks with 3' extensions, such as would result from cleavage of two C residues in a self-complementary G-C sequence, were conspicuously absent. These data provide further evidence that bleomycin-induced double-strand breaks do not result from coincidence of independent site-specific single-strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Defined DNA substrates containing discrete abasic sites or paired abasic sites set 1, 3, 5 and 7 bases apart on opposite strands were constructed to examine the reactivity of S1, mung bean and P1 nucleases towards abasic sites. None of the enzymes acted on the substrate containing discrete abasic sites. Under conditions where little or no non-specific DNA degradation was observed, all three nucleases were able to generate double-strand breaks when the bistranded abasic sites were 1 and 3 base pairs apart. However, when the abasic sites were further apart, the enzymes again failed to cleave the DNA. These results indicate that single abasic sites do not cause sufficient denaturation of the DNA to allow incision by these single-strand specific endonucleases. The reactivity of these enzymes was also investigated on DNA substrates that were nicked by DNasel or more site-specifically by endonuclease III incision at the discrete abasic sites. The three nucleases readily induced a strand break opposite such nicks.  相似文献   

7.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

8.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

9.
Multiply damaged sites (MDSs) consist of two or more damages within 20 base pairs (bps) and are introduced into DNA by ionizing radiation. Using a plasmid assay, we previously demonstrated that repair in Escherichia coli generated a double strand break (DSB) from two closely opposed uracils when uracil DNA glycosylase initiated repair. To identify the enzymes that converted the resulting apurinic/apyrimidinic (AP) sites to DSBs, repair was examined in bacteria deficient in AP site cleavage. Since exonuclease III (xth) and endonuclease IV (nfo) mutant bacteria were able to introduce DSBs at the MDSs, we generated unique bacterial mutants deficient in UvrA, Xth and Nfo. However, the additional disruption of nucleotide excision repair (NER) did not prevent DSB formation. xth- nfo- nfi- bacteria also converted the MDSs to DSBs, ruling out endonuclease V as the candidate AP endonuclease. By using MDSs containing tetrahydrofuran (an AP site analog), it was determined that even in the absence of Xth, Nfo, NER and AP lyase cleavage, DSBs were formed from closely opposed AP sites. This finding implies that there is an unknown enzyme/repair pathway for MDSs, and multiple underlying repair systems in cells that can process closely opposed DNA damage into lethal lesions following exposure to ionizing radiation.  相似文献   

10.
The I-CeuI endonuclease is a member of the growing family of homing endonucleases that catalyse mobility of group I introns by making a double-strand break at the homing site of these introns in cognate intronless alleles during genetic crosses. In a previous study, we have shown that a short DNA fragment of 26 bp, encompassing the homing site of the fifth intron in the Chlamydomonas eugametos chloroplast large subunit rRNA gene (Ce LSU.5), was sufficient for I-CeuI recognition and cleavage. Here, we report the recognition sequence of the I-CeuI endonuclease, as determined by random mutagenesis of nucleotide positions adjacent to the I-CeuI cleavage site. Single-base substitutions that completely abolish endonuclease activity delimit a 15-bp sequence whereas those that reduce the cleavage rate define a 19-bp sequence that extends from position -7 to position +12 with respect to the Ce LSU.5 intron insertion site. As the other homing endonucleases that have been studied so far, the I-CeuI endonuclease recognizes a non-symmetric degenerate sequence. The top strand of the recognition sequence is preferred for I-CeuI cleavage and the bottom strand most likely determines the rate of double-strand breaks.  相似文献   

11.
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.  相似文献   

12.
Using filter elution techniques, we have measured the level of induced single- and double-strand DNA breaks and the rate of strand break rejoining following exposure of two Chinese hamster ovary (CHO) cell mutants to bleomycin or neocarzinostatin. These mutants, designated BLM-1 and BLM-2, were isolated on the basis of hypersensitivity to bleomycin and are cross-sensitive to a range of other free radical-generating agents, but exhibit enhanced resistance to neocarzinostatin. A 1-h exposure to equimolar doses of bleomycin induces a similar level of DNA strand breaks in parental CHO-K1 and mutant BLM-1 cells, but a consistently higher level is accumulated by BLM-2 cells. The rate of rejoining of bleomycin-induced single- and double-strand DNA breaks is slower in BLM-2 cells than in CHO-K1 cells. BLM-1 cells show normal strand break repair kinetics. The level of single- and double-strand breaks induced by neocarzinostatin is lower in both BLM-1 and BLM-2 cells than in CHO-K1 cells. The rate of repair of neocarzinostatin-induced strand breaks is normal in BLM-1 cells but retarded somewhat in BLM-2 cells. Thus, there is a correlation between the level of drug-induced DNA damage in BLM-2 cells and the bleomycin-sensitive, neocarzinostatin resistant phenotype of this mutant. Strand breaks induced by both of these agents are also repaired with reduced efficiency by BLM-2 cells. The neocarzinostatin resistance of BLM-1 cells appears to be a consequence of a reduced accumulation of DNA damage. However, the bleomycin-sensitive phenotype of BLM-1 cells does not apparently correlate with any alteration in DNA strand break induction or repair, as analysed by filter elution techniques, suggesting an alternative mechanism of cell killing.  相似文献   

13.
Brief exposure of covalently closed circular duplex PM2 DNA to low concentrations of the clinical bleomycin mixture (Blenoxane) resulted in specific fragmentation of the genome that does not depend on the presence of superhelical turns. The double-strand breaks are in fact produced at several discrete sites on the PM2 genome but frequently occurring near the HpaII restriction endonuclease cleavage site. Initial rates of formation of nicked circular and linear duplex PM2 DNAs are reduced to different extents as the ionic strength of the reaction is increased. Increasing ionic strength is most effective in reducing the initial rate and overall yield of apparent double-strand scissions compared with single-strand scissions in the bleomycin-treated PM2 DNA.  相似文献   

14.
In this study we demonstrate that the different substrate recognition properties of bacterial and human AP endonucleases might be used to quantify and localize apurinic (AP) sites formed in DNA in vivo. By using a model oligonucleotide containing a single AP site modified with methoxyamine (MX), we show that endonuclease III and IV of E. coli are able to cleave the alkoxyamine-adducted site whereas a partially purified HeLa AP endonuclease and crude cell-free extracts from HeLa cells are inhibited by this modification. In addition MX-modified AP sites in a DNA template retain their ability to block DNA synthesis in vitro. Since MX can efficiently react with AP sites formed in mammalian cells in vivo we propose that the MX modified abasic sites thus formed can be quantitated and localized at the level of the individual gene by subsequent site specific cleavage by either E. coli endonuclease III or IV in vitro.  相似文献   

15.
To elucidate the mechanism of the cell killing activity of neocarzinostatin on mammalian cells, the drug-induced damage of DNA and its repair were examined. Very low doses of neocarzinostatin, at which high survival of cells was observed, clearly produced single-strand breaks of DNA and decomposition of the 'DNA complex', but these damages appeared to be repaired almost completely. At higher doses of neocarzinostatin, single-strand breaks were repaired to a considerable extent while double-strand breaks seemed not to be repaired. The number of non-repairable single-strand breaks was about twice that of double-strand breaks. This implies that single-strand breaks are repaired except for those constituting double-strand breaks. Although at low levels of neocarzinostatin repair of double-strand breaks may occur, the correlation existing between the colony-forming ability of cells treated with neocarzinostatin and non-repairable DNA breakage suggests that production of a small number of critical non-repairable double-strand breaks per cell may be responsible for the cell killing activity of the drug.  相似文献   

16.
Recognition of oxidized abasic sites by repair endonucleases.   总被引:7,自引:3,他引:4       下载免费PDF全文
The recognition of 'regular' and 'oxidized' sites of base loss (AP sites) in DNA by various AP endonucleases was compared. Model substrates with regular AP sites (resulting from mere hydrolysis of the glycosylic bond) were produced by damaging bacteriophage PM2 DNA by exposure to low pH; those with AP sites oxidized at the C-4'- and C-1'-position of the sugar moiety by exposure to Fe(III)-bleomycin in the presence of H2O2 and to Cu(II)-phenanthroline in the presence of H2O2 and ethanol, respectively. The results confirmed that AP sites-together with single-strand breaks-are indeed the predominant type of DNA modification in all three cases. For the recognition of 4'-oxidized AP sites, a 400-fold higher concentration of Escherichia coli exonuclease III and between 5-fold and 50-fold higher concentrations of bacteriophage T4 endonuclease V, E. coli endonuclease III and E. coli FPG protein were required than for the recognition of regular AP sites. In contrast, the recognition of 4'-oxidized AP sites by E. coli endonuclease IV was effected by 4-fold lower concentrations than needed for regular AP sites. 1'-oxidized AP sites (generated by activated Cu(II)-phenanthroline) were recognized by endonuclease IV and exonuclease III only slightly (3-fold and 13-fold, respectively) less efficiently than regular AP sites. In contrast, there was virtually no recognition of 1'-oxidized AP sites by the enzymes which cleave at the 3' side of AP sites (T4 endonuclease V, endonuclease III and FPG protein). The described differences were exploited for the analysis of the DNA damage induced by hydroxyl radicals, generated by ionizing radiation or Fe(III)-nitrilotriacetate in the presence of H2O2. The results indicate that both regular and 1'-oxidized AP sites represent only minor fractions of the AP sites induced by hydroxyl radicals.  相似文献   

17.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

18.
Ionizing radiation and radiomimetic drugs such as bleomycin, calichieamycin, neocarzinostatin chromophore, and other synthetic agents can produce both single and double strand breaks in DNA. The ability to study the structure-activity relationships of single and double-strand break repair, lethality, and mutagenesis in vivo is complicated by the numerous types and sites of DNA cleavage products that can be induced by such agents. The ability to "cage" such breaks in DNA might help to further such studies and additionally afford a mechanism for activating and deactivating nucleic acid based drugs and probes. The major type of single strand break induced by ionizing radiation is a 3'- and 5'-phosphate terminated single nucleotide gap. Previously, a caged strand break of this type had been developed that was designed to produce the 5'-phosphate directly upon irradiation with 366 nm light, and the 3'-phosphate by a subsequent beta-elimination reaction [Ordoukhanian, P., and Taylor, J.-S. (1995) J. Am. Chem. Soc. 117, 9570]. Unfortunately, the release of the 3'-phosphate group was quite slow at pH 7. To circumvent this problem, a second caged strand break has been developed that produces the 3'-phosphate directly upon irradiation, and the 5'-phosphate by a subsequent beta-elimination reaction. When this caged strand break was used in tandem with the previous caged strand break, 5'- and 3'-phosphate terminated gaps could be directly produced by irradiation with 366 nm light. These caged single strand breaks were also incorporated in tandem into hairpin substrates to demonstrate that they could be used to cage double strand breaks. These caged single strand breaks should be generally useful for generating site-specific DNA single and double strand breaks and gaps, using wavelengths and doses of light that are nondetrimental to biological systems. Because the position of the single strand break can be varied, it should now be possible to examine the effect of the sequence context and cleavage pattern of single and double strand breaks on the lethality and mutagenicity of this important class of DNA damage.  相似文献   

19.
Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.  相似文献   

20.
It has been shown previously that the DNA deoxyribophosphodiesterase (dRpase) activity of Escherichia coli excises 2-deoxyribose 5-phosphate moieties at apurinic/apyrimidinic (AP) sites in DNA following cleavage of the DNA at the AP site by an AP endonuclease such as endonuclease IV of E coli. A second class of enzymes that cleave DNA at AP sites by a beta-elimination mechanism, AP lyases, leave a different sugar-phosphate product remaining at the AP site, which has been identified as the compound trans-4-hydroxy-2-pentenal 5-phosphate. It is shown that dRpase removes this unsaturated sugar-phosphate group following cleavage of a poly(dA-dT) substrate containing AP sites by the action of the AP lyase endonuclease III of E. coli. The Km for the removal of trans-4-hydroxy-2-pentenal 5-phosphate is 0.06 microM; the Km for the removal of 2-deoxyribose 5-phosphate is 0.17 microM. It was verified that the sugar-phosphate product removed by dRpase from the endonuclease III-cleaved substrate was trans-4-hydroxy-2-pentenal 5-phosphate by conversion of the product to the compound cyclopentane-1,2-dione. The dRpase activity is unique in its ability to remove sugar-phosphate products after cleavage by both AP endonucleases and AP lyases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号