首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructose diphosphate aldolase of Mycobacterium smegmatis is found to be a class I type aldolase and possesses functional similarities with rabbit muscle aldolase with respect to the amino acid residues at the catalytic site. The presence of a lysine residue at the active site is indicated by the formation of a Schiff-base with the substrate. The lower degree of inactivation compared to rabbit muscle aldolase on treatment with carboxypeptidase-A suggests the absence of an essential terminal tyrosine residue. Participation of histidine residues in enzyme catalysis is suggested by the photoinactivation of the enzyme in presence of methylene blue. Finally, thiol groups do not seem to have a direct role in catalysis.  相似文献   

2.
Immunochemical studies using polyclonal antisera prepared individually against highly purified cytosolic and chloroplast spinach leaf (Spinacia oleracea) fructose bisphosphate aldolases showed significant cross reaction between both forms of spinach aldolase and their heterologous antisera. The individual cross reactions were estimated to be approximately 50% in both cases under conditions of antibody saturation using a highly sensitive enzyme-linked immunosorbent assay. In contrast, the class I procaryotic aldolase from Mycobacterium smegmatis and the class II aldolase from yeast (Saccharomyces cerevisiae) did not cross-react with either type of antiserum. The 29 residue long amino-terminal amino acid sequences of the procaryotic M. smegmatis and the spinach chloroplast aldolases were determined. Comparisons of these sequences with those of other aldolases showed that the amino-terminal primary structure of the chloroplast aldolase is much more similar to the amino-terminal structures of class I cytosolic eucaryotic aldolases than it is to the corresponding region of the M. smegmatis enzyme, especially in that region which forms the first “beta sheet” in the secondary structure of the eucaryotic aldolases. Moreover, results of a systematic comparison of the amino acid compositions of a number of diverse eucaryotic and procaryotic fructose bisphosphate aldolases further suggest that the chloroplast aldolase belongs to the eucaryotic rather than the procaryotic “family” of class I aldolases.  相似文献   

3.
Mycobacterium smegmatis topoisomerase I has several distinctive features. The absence of the zinc finger motif found in other prokaryotic type I topoisomerases and the ability of the enzyme to recognise single-stranded and duplex DNA are unique characteristics of the enzyme. We have mapped the strong topoisomerase sites of the enzyme on genomic DNA sequences from Mycobacterium tuberculosis and M.smegmatis. The enzyme does not nick DNA in random fashion and DNA cleavage occurred at a few specific sites. Mapping of these sites revealed conservation of a pentanucleotide motif CG/TCT↓T at the cleavage site (↓ represents the cleavage site). The enzyme binds and cleaves consensus oligonucleotides having this sequence motif. The protein exhibits a very high preference for C or a G residue at the +2 position with respect to the cleavage site. Based on earlier and the present studies we propose that the enzyme functions in vivo mainly at these specific sites to carry out topological reactions.  相似文献   

4.
This is the first report on the purification and characterization of an anaplerotic enzyme from a Mycobacterium. The anaplerotic reactions play important roles in the biochemical differentiation of mycobacteria into non-replicating stages. We have purified and characterized a pyruvate carboxylase (PYC) from Mycobacterium smegmatis and cloned and sequenced its gene. We have developed a very rapid and efficient purification protocol that provided PYC with very high specific activities (up to 150 U/mg) that remained essentially unchanged over a month. The enzyme was found to be a homomultimer of 121 kDa subunits, mildly thermophilic, absolutely dependent on acyl-CoAs for activity and inhibited by ADP, by excess Mg2+, Co2+, and Mn2+, by aspartate, but not by glutamate and α-ketoglutarate. Supplementation of minimal growth medium with aspartate did not lower the cellular PYC level, rather doubled it; with glutamate the level remained unchanged. These observations would not fit the idea that the M. smegmatis enzyme fulfills a straightforward anaplerotic function; in a closely related organism, Corynebacterium glutamicum, PYC is the major anaplerotic enzyme. Growth on glucose provided 2-fold higher cellular PYC level than that observed with glycerol. The PYCs of M. smegmatis and Mycobacterium tuberculosis were highly homologous to each other. In M. smegmatis, M. tuberculosis and M. lepra, pyc was flanked by a putative methylase and a putative integral membrane protein genes in an identical operon-like arrangement. Thus, M. smegmatis could serve as a model for studying PYC-related physiological aspects of mycobacteria. Also, the ease of purification and the extraordinary stability could make the M. smegmatis enzyme a model for studying the structure–function relationships of PYCs in general. It should be noted that no crystal structure is available for this enzyme of paramount importance in all three domains of life, archaea, bacteria, and eukarya.  相似文献   

5.
Glucose 6-phosphate (G6P) is a metabolic intermediate with many possible cellular fates. In mycobacteria, G6P is a substrate for an enzyme, F420-dependent glucose-6-phosphate dehydrogenase (Fgd), found in few bacterial genera. Intracellular G6P levels in six Mycobacterium sp. were remarkably higher (∼17–130-fold) than Escherichia coli and Bacillus megaterium. The high G6P level in Mycobacterium smegmatis may result from 10–25-fold higher activity of the gluconeogenic enzyme fructose-1,6-bisphosphatase when grown on glucose, glycerol, or acetate compared with B. megaterium and E. coli. In M. smegmatis this coincided with up-regulation of the first gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, when acetate was the carbon source, suggesting a cellular program for maintaining high G6P levels. G6P was depleted in cells under oxidative stress induced by redox cycling agents plumbagin and menadione, whereas an fgd mutant of M. smegmatis used G6P less well under such conditions. The fgd mutant was more sensitive to these agents and, in contrast to wild type, was defective in its ability to reduce extracellular plumbagin and menadione. These data suggest that intracellular G6P in mycobacteria serves as a source of reducing power and, with the mycobacteria-specific Fgd-F420 system, plays a protective role against oxidative stress.  相似文献   

6.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

7.
2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate (MEC), an intermediate of the biosynthesis of isoprenoid compounds in bacteria, was found to be capable of exerting a resuscitating effect on resting Mycobacterium smegmatis cells. The introduction of an additional copy of the ispE gene encoding cytidyl-methyl-erythritol kinase, an enzyme involved in MEC synthesis in M. smegmatis, resulted in the emergence of a capacity for spontaneous reactivation of “nonculturable” M. smegmatis cells, which is not characteristic of the wild-type cells of this species. The involvement of MEC in the transition from the “nonculturable” state to the state of active growth is indicative of a previously unknown function of MEC, assumed to consist in regulation of the bacterial genome activity.  相似文献   

8.
Mycobacterium smegmatis is a commonly used mycobacterial model system. Here, we show that M. smegmatis protects itself against elevated salinity by synthesizing ectoine and hydroxyectoine and characterize the phenotype of a nonproducing mutant. This is the first analysis of M. smegmatis halotolerance and of the molecular mechanism that supports it.  相似文献   

9.
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.  相似文献   

10.
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.  相似文献   

11.

Background

Tuberculosis remains a serious world-wide health threat which requires the characterisation of novel drug targets for the development of future antimycobacterials. One of the key obstacles in the definition of new targets is the large variety of metabolic alterations that occur between cells in the active growth and chronic/dormant phases of tuberculosis. The ideal biochemical target should be active in both growth phases. Methionine adenosyltransferase, which catalyses the formation of S-adenosylmethionine from methionine and ATP, is involved in polyamine biosynthesis during active growth and is also required for the methylation and cyclopropylation of mycolipids necessary for survival in the chronic phase.

Results

The gene encoding methionine adenosyltransferase has been cloned from Mycobacterium tuberculosis and the model organism M. smegmatis. Both enzymes retained all amino acids known to be involved in catalysing the reaction. While the M. smegmatis enzyme could be functionally expressed, the M. tuberculosis homologue was insoluble and inactive under a large variety of expression conditions. For the M. smegmatis enzyme, the Vmax for S-adenosylmethionine formation was 1.30 μmol/min/mg protein and the Km for methionine and ATP was 288 μM and 76 μM respectively. In addition, the enzyme was competitively inhibited by 8-azaguanine and azathioprine with a Ki of 4.7 mM and 3.7 mM respectively. Azathioprine inhibited the in vitro growth of M. smegmatis with a minimal inhibitory concentration (MIC) of 500 μM, while the MIC for 8-azaguanine was >1.0 mM.

Conclusion

The methionine adenosyltransferase from both organisms had a primary structure very similar those previously characterised in other prokaryotic and eukaryotic organisms. The kinetic properties of the M. smegmatis enzyme were also similar to known prokaryotic methionine adenosyltransferases. Inhibition of the enzyme by 8-azaguanine and azathioprine provides a starting point for the synthesis of higher affinity purine-based inhibitors.  相似文献   

12.
13.
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, and it is instant to discover novel anti-TB drugs due to the rapidly growing drug-resistance TB. Mycobacterium tuberculosis (Mtb) secreted effector ESAT6 plays a critical role in modulation miRNAs to regulate host defense mechanisms during Mtb infection, it can be a possible target for new tuberculosis drugs. The non-tuberculous mycobacteria Mycobacterium smegmatis (M. smegmatis) and Mtb have high gene homology but no pathogenicity. We used ESAT6 to interfere with macrophages or mice infected by M. smegmatis and determined that it enhanced the survival rate of bacteria and regulated miR-222-3p target PTEN. Expression of miR-222-3p reduced and PTEN enhanced with the progression of macrophages infected by M. smegmatis with ESAT6 co-incubation. MiR-222-3p overexpression diminished M. smegmatis survival and upregulated proinflammatory cytokines. VO-Ohpic trihydrate (PTEN inhibitor) reduced M. smegmatis survival and upregulated proinflammatory cytokines in vivo and in vitro, and VO-Ohpic trihydrate reversed the tissue damage of mouse organs caused by ESAT6. These results uncover an ESAT6 dependent role for miR-222-3p and its target PTEN in regulating host immune responses to bacterial infection and may provide a potential site for the development of anti-tuberculosis drugs that specifically antagonize the virulence of ESAT6.  相似文献   

14.
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.  相似文献   

15.
《Gene》1996,174(2):285-287
A DNA segment from Mycobacterium tuberculosis containing a gene for a putative sigma factor was isolated and sequenced. The protein encoded by this gene is 92% similar to the Mycobacterium smegmatis sigma factor MysB, and has been designated Mtu SigB. A Mycobacterium leprae homologue of mysB and mtu sigB was identified in the database.  相似文献   

16.
The pyrazinamidase from Mycobacterium smegmatis was purified to homogeneity to yield a product of approximately 50 kDa. The deduced amino-terminal amino acid sequence of this polypeptide was used to design an oligonucleotide probe for screening a DNA library of M. smegmatis. An open reading frame, designated pzaA, which encodes a polypeptide of 49.3 kDa containing motifs conserved in several amidases was identified. Targeted knockout of the pzaA gene by homologous recombination yielded a mutant, pzaA::aph, with a more-than-threefold-reduced level of pyrazinamidase activity, suggesting that this gene encodes the major pyrazinamidase of M. smegmatis. Recombinant forms of the M. smegmatis PzaA and the Mycobacterium tuberculosis pyrazinamidase/nicotinamidase (PncA) were produced in Escherichia coli and were partially purified and compared in terms of their kinetics of nicotinamidase and pyrazinamidase activity. The comparable Km values obtained from this study suggested that the unique specificity of pyrazinamide (PZA) for M. tuberculosis was not based on an unusually high PZA-specific activity of the PncA protein. Overexpression of pzaA conferred PZA susceptibility on M. smegmatis by reducing the MIC of this drug to 150 μg/ml.  相似文献   

17.
Mycobacteria and their cell wall components have been used with varying degrees of success to treat tumors, and Mycobacterium bovis BCG remains in use as a standard treatment for superficial bladder cancer. Mycobacterial immunotherapy is very effective in eliciting local immune responses against solid tumors when administered topically; however, its effectiveness in eliciting adaptive immune responses has been variable. Using a subcutaneous mouse thymoma model, we investigated whether immunotherapy with Mycobacterium smegmatis, a fast-growing mycobacterium of low pathogenicity, induces a systemic adaptive immune response. We found that M. smegmatis delivered adjacent to the tumor site elicited a systemic anti-tumor immune response that was primarily mediated by CD8+ T cells. Of note, we identified a CD11c+CD40intCD11bhiGr-1+ inflammatory DC population in the tumor-draining lymph nodes that was found only in mice treated with M. smegmatis. Our data suggest that, rather than rescuing the function of the DC already present in the tumor and/or tumor-draining lymph node, M. smegmatis treatment may promote anti-tumor immune responses by inducing the involvement of a new population of inflammatory cells with intact function.  相似文献   

18.
Ung KS  Av-Gay Y 《FEBS letters》2006,580(11):2712-2716
The effect of exogenous oxidative stress on mycothiol (MSH) levels and redox balance was investigated in mycobacteria. Both the thiol-specific oxidant diamide and hydrogen peroxide induced up to 75% depletion of MSH to form the disulfide form, mycothione (MSSM), in Mycobacterium bovis BCG. In comparison, Mycobacterium smegmatis, a saprophytic mycobacterium, displays a greater tolerance towards these oxidants, reflected by the lack of fluxes in MSH levels and redox ratios upon oxidative stress treatments. The basal ratio of MSH to MSSM was established to be 50:1 in M. bovis BCG and 200:1 in M. smegmatis.  相似文献   

19.
Guanosine monophosphate synthetase (GMPS), encoded by guaA gene, is a key enzyme for guanine nucleotide biosynthesis in Mycobacterium tuberculosis. The guaA gene from several bacterial pathogens has been shown to be involved in virulence; however, no information about the physiological effect of direct guaA deletion in M. tuberculosis has been described so far. Here, we demonstrated that the guaA gene is essential for M. tuberculosis H37Rv growth. The lethal phenotype of guaA gene disruption was avoided by insertion of a copy of the ortholog gene from Mycobacterium smegmatis, indicating that this GMPS protein is functional in M. tuberculosis. Protein validation of the guaA essentiality observed by PCR was approached by shotgun proteomic analysis. A quantitative method was performed to evaluate protein expression levels, and to check the origin of common and unique peptides from M. tuberculosis and M. smegmatis GMPS proteins. These results validate GMPS as a molecular target for drug design against M. tuberculosis, and GMPS inhibitors might prove to be useful for future development of new drugs to treat human tuberculosis.  相似文献   

20.
The aerobic saprophyte Mycobacterium smegmatis, like its pathogenic counterpart M. tuberculosis, has the ability to adapt to anaerobiosis by shifting down to a dormant state. Here, we report the identification and molecular genetic characterisation of the first dormancy-induced protein in M. smegmatis. Comparative SDS-polyacrylamide gel electrophoresis of protein extracts of aerobically growing and dormant anaerobic M. smegmatis cultures revealed the upregulation of a 27-kDa protein in the dormant state. Peptide sequencing showed that the induced protein is a homologue of the histone-like protein Hlp, predicted by the M. tuberculosis genome project. The corresponding hlp gene was cloned from M. smegmatis and sequenced. Disruption of the hlp gene eliminated the histone-like protein but did not affect the viability of the dormant culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号