首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The organization of rhodopsin in the photoreceptor membrane of sheep rod outer segments was investigated by using a variety of bifunctional reagents. Of the nine reagents used, seven gave oligomeric opsin species, whereas two, copper phenanthroline and dithiobisphenyl azide, failed to cross-link the protein. In general, the cross-linked species obtained showed diminishing yields from dimer to tetramer, together with some higher-molecular-weight aggregates. It is proposed that the patterns of cross-linking arise as a result of collision complexes and best describe a monomeric organization for native rhodopsin. No significant differences between the patterns obtained with dark-adapted bleached or regenerated protein states were observed. This interpretation is discussed in relation to the postulated mechanism of action of rhodopsin.  相似文献   

2.
31P-NMR measurements demonstrate that at 37°C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photoreceptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

3.
31P-NMR measurements demonstrate that at 37 degrees C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photo-receptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

4.
5.
The supramolecular organization of the visual pigment rhodopsin in the photoreceptor membrane remains contentious. Specifically, whether this G protein-coupled receptor functions as a monomer or dimer remains unknown, as does the presence or absence of ordered packing of rhodopsin molecules in the photoreceptor membrane. Completely opposite opinions have been expressed on both issues. Herein, using small-angle neutron and X-ray scattering approaches, we performed a comparative analysis of the structural characteristics of the photoreceptor membrane samples in buffer, both in the outer segment of photoreceptor cells, and in the free photoreceptor disks. The average distance between the centers of two neighboring rhodopsin molecules was found to be ~5.8 nm in both cases. The results indicate an unusually high packing density of rhodopsin molecules in the photoreceptor membrane, but molecules appear to be randomly distributed in the membrane without any regular ordering.  相似文献   

6.
Interaction of alpha-tocopherol with free fatty acids in bovine retinal photoreceptor membranes was studied using ESR spin-probe technique and measurements of rhodopsin thermal denaturation rates. Exogenous alpha-tocopherol incorporated into photoreceptor membranes prevented thermal destabilization of rhodopsin caused by free fatty acids. The efficiency of the stabilizing action of alpha-tocopherol directly depended both on the chain length and the degree of fatty acid unsaturation.  相似文献   

7.
Fourier transform infrared spectroscopy has been used to study the structure of bovine photoreceptor membrane. Rhodopsin appears to contain an extensive alpha-helical structure which is arranged predominantly perpendicular to the membrane plane. Spectra of delipidated rhodopsin and rhodopsin membranes reconstituted from dioleyl-phosphatidylcholine were compared with native photoreceptor membrane from rod outer segments in order to facilitate peak assignments. It is concluded that spectroscopic peaks characteristic of several protein and lipid groups can be assigned. We also find delipidation leads to alteration of the rhodopsin structure which is restored upon reconstitution. Membranes both suspended in 2H2O and dehydrated were compared in order to detect possible conformational differences. Dehydration does not appear to grossly alter rhodopsin structure, although it may affect delipidated rhodopsin.  相似文献   

8.
Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.  相似文献   

9.
The ESR measuring of UV-induced free radicals concentration limit has been used for studying rhodopsin aggregate state in the photoreceptor membrane.  相似文献   

10.
Reaction of isolated bovine rod outer segment membrane with radioactiveN-ethylmaleimide, both in the presence and absence of 1% dodecyl sulfate followed by dodecyl sulfate-polyacrylamide gel electrophoresis, shows that six sulfhydryl groups (96% of total sulfhydryl in this membrane) are located on the rhodopsin molecule.On the basis of their reactivity towardsp-chloromercuribenzoate andp-chloromercuribenzene sulfonate in suspensions of outer segment membranes, the sulfhydryl groups of rhodopsin can be divided into three pairs. One pair is rapidly modified, both in light and darkness. This modification does not impair the recombination capacity of opsin with 11-cis retinaldehyde under regeneration of rhodopsin. A second pair is modified upon prolonged interaction with thep-chloromercuriderivatives in darkness. Modification of this pair leaves the typical rhodopsin absorbance at 500 nm intact, but a proportional loss of recombination capacity does occur. The third pair is only modified after illumination and is probably located in the vicinity of the chromophoric center.The difference between these results and those obtained by modification with dithiobis-(2-nitrobenzoic acid) orN-ethylmaleimide in suspension, where even upon prolonged exposure to light as well as in darkness only two sulfhydryl groups of rhodopsin are modified, is explained by the detergent-like character of thep-chloromercuri-derivatives.  相似文献   

11.
Visual pigments are a class of receptor proteins that absorb light and trigger sensory signals. Retinal-containing proteins are used in nature as photoreceptors mainly in animals vision. Mammalian rhodopsin is the best studied example of a light sensor which couples photon absorption to a cascade of biochemical reactions amplifying the input signal. A surprising discovery was to find rhodopsin also in Archaebacteria and in unicellular eukaryotes. On the basis of absorption microspectroscopic measurements and of inhibition experiments on pigment biosynthetic pathways, we have recently suggested that a rhodopsin could be the functional receptor of the visual process in Euglena gracilis, a flagellate which can use light directly to promote photosynthetic reactions, or as an incident flux of information to adjust its swimming orientation. We here report purification and identification of all-trans-retinal by column chromatography, HPLC and GC-MS in E. gracilis; these findings indicate with absolute certainty that rhodopsin is the photoreceptor molecule of this microorganism.  相似文献   

12.
13.
14.
Molecular interactions between the photoreceptor G protein and rhodopsin   总被引:1,自引:0,他引:1  
1. The visual transduction system of the vertebrate retina is a well-studied model for biochemical and molecular studies of signal transduction. The structure and function of rhodopsin, a prototypical G protein-coupled receptor, and transducin or Gt, the photoreceptor G protein, have been particularly well studied. Mechanisms of rhodopsin-Gt interaction are discussed in this review. 2. The visual pigment rhodopsin contains a chromophore, and thus conformational changes leading to activation can be monitored spectroscopically. A model of the conformational changes in the activated receptor is presented based on biophysical and biochemical data. 3. The current information on sites of interaction on receptors and cognate G proteins is summarized. Studies using synthetic peptides from amino acid sequences corresponding to Gt and rhodopsin have provided information on the sites of rhodopsin-Gt interaction. Synthetic peptides from the carboxyl terminal region of alpha t mimic Gt by stabilizing the active conformation of rhodopsin, Metarhodopsin II. 4. The conformation of one such peptide when it is bound to Metarhodopsin II was determined by 2D NMR. The model based on the NMR data was tested using peptide analogs predicted to stabilize or break the structure. These studies yield molecular insight into why toxin-treated and mutant G proteins are uncoupled from receptors.  相似文献   

15.
Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor.   总被引:17,自引:4,他引:13       下载免费PDF全文
The gene coding for sensory rhodopsin I (SR-I) has been identified in a restriction fragment of genomic DNA from the Halobacterium halobium strain L33. Of the 1014 nucleotides whose sequence was determined, 720 belong to the structural gene of SR-I. In the 5' non-coding region two putative promoter elements and a ribosomal binding site have been identified. The 3' flanking region bears a potential terminator structure. The SR-I protein moiety carries no signal peptide and is not processed at its N terminus. The C terminus, however, lacks the last aspartic acid residue encoded by the gene. Analysis of the primary structure of SR-I reveals no consistent homology with the eukaryotic photoreceptor rhodopsin, but 14% homology with the halobacterial ion pumps, bacteriorhodopsin (BR) and halorhodopsin (HR). Residues conserved in all three proteins are discussed with respect to their contribution to secondary structure, retinal binding and ion translocation. The aspartic acid residue which mediates in BR the reprotonation of the Schiff base (D96) is replaced in SR-I by a tyrosine (Y87). This amino acid replacement is proposed to be of crucial importance in the evolution of the slow-cycling photosensing pigment SR-I.  相似文献   

16.
A model for random cross-linking of identical monomers diffusing in a membrane was formulated to test whether rhodopsin's cross-linking behavior was quantitatively consistent with a monomeric structure. Cross-linking was performed on rhodopsin both in intact retinas and in isolated rod outer segment (ROS) membranes using the reagent glutaraldehyde. The distribution of covalent oligomers formed was analyzed by SDS-polyacrylamide gel electrophoresis and compared to predictions for the random model. A similar analysis was made for ROS membranes cross-linked by diisocyanatohexane and retinas cross-linked by cupric ion complexed with o-phenanthroline. Patterns of cross-linking produced by these three reagents are reasonably consistent with the monomer model. Glutaraldehyde was also used to cross-link the tetrameric protein aldolase in order to verify that cross-linking of a stable oligomer, under conditions comparable to those used for ROS, yielded the pattern predicted for a tetrameric protein having D2 symmetry. This pattern is markedly different from the one for a random-collision model. Moreover, a comparison of rates showed that aldolase cross-linking with glutaraldehyde is significantly faster than cross-linking of membrane-bound rhodopsin. It is concluded that rhodopsin is monomeric in dark-adapted photoreceptor membranes and that the observed cross-linking results from collisions between diffusing rhodopsin molecules.  相似文献   

17.
The deep-sea squid, Todarodes pacificus, possesses well-developed parolfactory vesicles as extraocular photoreceptors connected with the brain. The ventral set of vesicles forms a thread approximately 3mm long and looks orange owing to photopigments. The vesicle mainly consists of receptor cells, each of which is similar in structure to the visual cell, carrying rhabdomeres in the distal process and lamellated myeloid bodies in the proximal part. Recently we noticed that a crude extract of the vesicles is capable of isomerizing retinal from all-trans to the 11-cis form in the light, and confirmed that the vesicles in fact contained retinochrome in addition to rhodopsin. This is the first time that retinochrome has been detected in any place other than ocular tissues. The optical and chemical nature of these photopigments is the same as that we have observed in the Todarodes retina. Quantitative extractions have shown that the total yield of photopigments is approximately 0.0006 in absorbance at lambda max (light path, 10 mm) per milliliter per thread of vesicles, and that the amount of retinochrome in the vesicles is roughly equivalent to that of rhodopsin. Whereas rhodopsin is located in the rhabdomal membranes, retinochrome is probably associated with lamellated structures and their derivatives in the cytoplasm. In the parolfactory vesicles, retinochrome may also cooperate with rhodopsin in the same way as has been discussed for retinal photoreception.  相似文献   

18.
19.
20.
Frog rod outer segments were labeled with the sulfhydryl-reactive label iodoacetamido tetramethylrhodamine. The bulk of the label reacted with the major disk membrane protein, rhodopsin. Fluorescence photobleaching and recovery (FPR) experiments on labeled rods showed that the labeled proteins diffused rapidly in the disk membranes. In these FPR experiments we observed both the recovery of fluorescence in the bleached spot and the loss of fluorescence from nearby, unbleached regions of the photoreceptor. These and previous experiments show that the redistribution of the fluorescent labeled proteins after bleaching was due to diffusion. The diffusion constant, D, was (3.0 +/- 10(-9) cm2 s-1 if estimated from the rate of recovery of fluorescence in the bleached spot, and (5.3 +/- 2.4) x 10(-9) cm2 s-1 if estimated from the rate of depletion of fluorescence from nearby regions. The temperature coefficient, Q10, for diffusion was 1.7 +/- 0.5 over the range 10 degrees--29 degrees C. These values obtained by FPR are in good agreement with those previously obtained by photobleaching rhodopsin in fresh, unlabeled rods. This agreement indicates that the labeling and bleaching procedures required by the FPR method did not significantly alter the diffusion rate of rhodopsin. Moreover, the magnitude of the diffusion constant for rhodopsin is that to be expected for an object of its diameter diffusing in a bilayer with the viscosity of the disk membrane. In contrast to the case of rhodopsin, FPR methods applied to other membrane proteins have yielded much smaller diffusion constants. The present results help indicate that these smaller diffusion constants are not artifacts of the method but may instead be due to interactions the diffusing proteins have with other components of the membrane in addition to the viscous drag imposed by the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号