首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alias Z  Tan IK 《Bioresource technology》2005,96(11):1229-1234
In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).  相似文献   

2.
This research was designed to screen for strains that produce microbial oil by using straw as the substrate. One hundred and forty-one isolates of endophytic fungi were obtained from stems of seven oleaginous plant species. Sixty-nine isolates (48.9% of the total isolates) could be clearly seen having lipid bodies in their hyphae when examined with optical microscopy. Twenty-six isolates which had bigger and more oil bodies in their hyphae were selected for further research. These isolates belong to five genera includingMicrosphaeropsis, Phomopsis, Cephalosporium, Sclerocystis andNigrospora. Their oil contents ranged from 21.3 to 35.0% of dry cell weights when cultured in potato dextrose broth. When cultured on the solid-state medium composed of steam-exploded wheat straw (20% w/w), wheat bran (5%) and water (75%) they were able to produce cellulase and microbial oil with yields of 0.31≈0.69 filter paper unit and 19≈42 mg/g initial dry substrate, respectively. These results show that some endophytic fungi isolated from the oleaginous plants have the abilities of accumulating oil and producing cellulase simultaneously. They may be potential microbial oil producers by utilising straw as the substrate.  相似文献   

3.
In the present study, two cellulose-degrading bacteria (CDB-5 and CDB-12) were isolated from mangrove soils of Mahanadi river delta, based on halo zone formation in Congo red agar medium and evaluation for cellulase production in CMC broth medium. Based on morphological, biochemical and 16S rRNA gene sequencing, the two strains, CDB-5 and CDB-12, were identified as Brucella sp. and Bacillus licheniformis, respectively. The gene bank accession number of the strains CDB-5 and CDB-12 are KR632646 and KR632645, respectively. The strain Brucella sp. and B. licheniformis showed an enzyme activity of 96.37?U/ml and 98.25?U/ml, respectively, after 72?h of incubation period. Enzyme production was optimized under different growth conditions such as pH, temperature, agitation rate, carbon source, sodium chloride (NaCl), and nitrogen sources. Maximum cellulase production by both the strains was obtained in the same parameter condition such as pH (7.0), rpm (150), and NaCl (2%, w/v) which varies for other parameters. The strain, CDB-5, produced maximum cellulase at 35?°C temperature, maltose as a carbon source, and yeast extract as a nitrogen source where as the strain CDB-12 produces maximum cellulase at 45?°C temperature, carboxyl methyl cellulose (CMC) as carbon source and trypton as a nitrogen source. The bacterial crude enzyme was purified by ammonium sulfate precipitation followed by overnight dialysis. SDS-PAGE analysis of the partially purified cellulase enzyme exhibited band sizes of approximately 55 and 72?kDa.  相似文献   

4.
The wide variety of bacteria in the environment permits screening for more efficient cellulases to help overcome current challenges in biofuel production. This study focuses on the isolation of efficient cellulase producing bacteria found in organic fertilizers and paper mill sludges which can be considered for use in large scale biorefining. Pure isolate cultures were screened for cellulase activity. Six isolates: S1, S2, S3, S4, E2, and E4, produced halos greater in diameter than the positive control (Cellulomonas xylanilytica), suggesting high cellulase activities. A portion of the 16S rDNA genes of cellulase positive isolates were amplified and sequenced, then BLASTed to determine likely genera. Phylogenetic analysis revealed genera belonging to two major Phyla of Gram positive bacteria: Firmicutes and Actinobacteria. All isolates were tested for the visible degradation of filter paper; only isolates E2 and E4 (Paenibacillus species) were observed to completely break down filter paper within 72 and 96 h incubation, respectively, under limited oxygen condition. Thus E2 and E4 were selected for the FP assay for quantification of total cellulase activities. It was shown that 1% (w/v) CMC could induce total cellulase activities of 1652.2±61.5 and 1456.5±30.7 μM of glucose equivalents for E2 and E4, respectively. CMC could induce cellulase activities 8 and 5.6X greater than FP, therefore CMC represented a good inducing substrate for cellulase production. The genus Paenibacillus are known to contain some excellent cellulase producing strains, E2 and E4 displayed superior cellulase activities and represent excellent candidates for further cellulase analysis and characterization.  相似文献   

5.
Summary Fifty strains were isolated from different soil samples on synthetic medium containing inulin as a sole carbon source for the production of extracellular inulinase. Of them, five isolates showed high inulinase activity and one of them was selected for identification and medium optimization studies. The isolate was identified as Aspergillus niger. Various physical and chemical parameters were optimized for inulinase production. Maximum productivity of inulinase (176 U ml−1) was achieved by employing medium containing 5% (w/v) inulin, galactose as additional carbon source, corn steep liquor and (NH4)H2PO4 as nitrogen sources, incubation period of 72 h, incubation temperature of 28 °C, pH 6.5, inoculum load at 10% (v/v) level and medium volume to flask volume ratio of 1:20 (v/v) with indented flasks.  相似文献   

6.
Total population of cellulose degrading bacteria was studied in a landfill ecosystem as a part of microbial diversity study. Samples were obtained from 3 and 5 feet depth of a local landfill being operated for past 10 years. Among many isolates, 22 bacterial strains were selected based on their capability to decompose carboxymethyl cellulose (CMC). These isolates were cultivated on agar medium with CMC as the carbon source. All isolates were Gram positive, endospore forming and alkalophilic bacteria with optimum growth pH 9–10. They were grouped based on the phenotypic and chemotaxonomic characters and representative strains of different groups along with high carboxymethyl cellulase (CMCase) producing strains were included for further characterization. Analysis of 16S rRNA gene indicated that these strains belong to different species of the genus Bacillus. Maximum CMCase activity of 4.8 U/ml at 50°C was obtained by strain LFC15. Results in the present study indicated the potential of waste land ecosystems such as landfill are potential source for isolation of industrially important microorganisms.  相似文献   

7.
From the soil samples of various locations, 245 strains of microorganisms were isolated by the enrichment culture method using olive oil as a carbon source. Of these microorganisms one deuteromycotinous yeast was the best producer of extracellular lipase, and the strain WU-C12 was identified as Trichosporon fermentans from the morphological and taxonomical properties. When cultivated at 30°C for 4 d in the medium containing 8% (w/v) corn steep and 3% (v/v) olive oil as sources of nitrogen and carbon, T. fermentans WU-C12 produced 126 U/ml of extracellular lipase. When 3% (v/v) tung oil was used instead of 3% (v/v) olive oil, 146 U/ml of the lipase was produced. Although lipase production decreased to 40 U/ml by the addition of 2% (w/v) glucose to the corn steep-olive oil medium, the strain WU-C12 produced 34 U/ml of lipase in the medium containing 2% (w/v) glucose instead of 3% (v/v) olive oil. On the other hand, T. fermentans WU-C12 could grow and produce lipase in the medium containing n-paraffin as a carbon source.  相似文献   

8.
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S?=?1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.  相似文献   

9.
This paper reports regulation of cellulase production in two thermophilic fungi, Melanocarpus sp. MTCC 3922 and Scytalidium thermophilum MTCC 4520. The expression of endoglucanase (EG), avicel adsorbable endoglucanase (AAEG) and β-glucosidase in both fungi was inducible. Of the different carbon sources tested, rice straw induced maximal levels of cellulase in both fungi. While, the addition of fructose (1%, w/v) to the carboxymethylcellulose (CMC) medium resulted in two-fold increase in endoglucanase production in Melanocarpus sp., however, the addition of ethanol (1%, v/v) resulted in eight-fold-increased expression of endoglucanase in S. thermophilum. The expression profiles of different components of cellulase complex were shown to be co-regulated in S. thermophilum but independently regulated in Melanocarpus sp.  相似文献   

10.
Spore suspensions of Aspergillus oryzae NRRL 3484 were subjected to mutagenesis using ultraviolet-irradiation followed by chemical treatments to improve the biosynthesis of cellulase. Ten mutant strains namely UEAC7, UEAR5, UNAC4, UNAC16, UNAR19, UNBC7, UNBR3, UNBR10, UNBR23 and UNBR25 were selected and their extracellular cellulase activities were assayed. Mutant UNAC4 gave the highest cellulase production [2,455 ± 28 U/g-dry substrate (ds) for filter paper-ase (FP-ase)] in a yield 4-fold exceeding that of the wild type strain (578 ± 5.0 U/g-ds for FP-ase). Rice straw (RS) was used as a sole carbon source for the enzyme production at a concentration of 10 % (w/v). Maximum cellulase production was achieved at initial medium pH 5.5, initial moisture content 77 % and an incubation temperature 28 °C on the fifth day of growth. NH4Cl proved to be the suitable added nitrogen source for maximum enzyme production followed by peptone. These results clearly indicate the cost-effectiveness of solid state fermentation technology in the economic production of extracellular cellulase. The hyper-production of cellulase by mutant strain UNAC4 has potential for industrial processes that convert lignocellulosic material (e.g. RS) into products of commercial value such as glucose and biofuels.  相似文献   

11.
Abstract

The ability of sulfate-reducing bacteria (SRB) to transform sodium sulfate into sodium carbonate has been investigated. The goal was to adapt and cultivate SRB to survive in a high-alkaline and high-salt environment. First, several strains of Gram-positive SRB were isolated and purified from sludge samples and used as initial strains; they were straight to curved rods belonging to the genus Clostridium. The isolates were acclimatized by increasing the concentration of sodium bicarbonate in the medium in a stepwise manner. Hydrogen and carbon dioxide were used as the electron donor and carbon source, respectively. Repeated semi-continuous cultivations created isolates that were able to reduce sulfate in media containing 1% w/v Na2SO4 and saturated with NaHCO3.  相似文献   

12.
Aims: To characterize bacilli isolated from shallow hydrothermal vents of Panarea Island (Italy) and evaluate their biotechnological potential. Methods and Results: Fifteen isolates were characterized by culture and molecular methods. Eleven isolates were thermophilic, six isolates were alkalophilic and four of them were haloalkalophilic. After 16S rRNA gene sequencing, four strains, exhibiting sequence similarity below 95% with deposited strains, may represent novel species of bacilli. One strain was strictly related to Geobacillus subterraneus, but shared phenotypic characteristics for which it could be considered a new strain of this species. Four strains were affiliated with different Bacillus spp. Most isolates produced gelatinase, lipases and amylase, and some were mercury tolerant. Exopolysaccharides (EPS) production was tested adding different sugars (glucose, sucrose, trehalose, fructose, ribose, xylose and mannose, 1% w/v) as a carbon source in a minimal medium. The highest EPS yield (185 mg l?1) was reached by strain 1A70 utilizing ribose as a carbon source. Conclusions: Novel strains of Geobacillus and indigenous ribotypes of Bacillus with biotechnological potential inhabit shallow vents of Panarea Island. Significance and Impact of the Study: New strains of thermophilic bacilli from Panarea are producers of useful biomolecules for industrial purposes as well as environmental and biotechnological applications.  相似文献   

13.
Bioremediation, a strategy mediated by microorganisms, is a promising way used in the degradation or removal of organic contaminants from soil or aquatic system. Exopolysaccharide (EPS) which was produced by a variety of Gram-negative bacteria has been demonstrated to be a potential bioemulsifier used in the degradation of hydrocarbons. In the present study, attempts were made to optimize the production of EPS from our newly isolates by adjusting the culture conditions and medium components. Besides, the performance of diesel oil emulsification using partially purified EPS derived from different conditions was also demonstrated. Out of 40 root nodulating bacteria the better emulsifying abilities were recorded from three strains namely Rhizobium miluonense CC-B-L1, Burkholderia seminalis CC-IDD2w and Ensifer adhaerens CC-GSB4, as can be seen from their emulsification index (E24) 66, 64 and 60%, respectively. These three strains produced 212, 203 and 198 mg l−1 of EPS, respectively, in yeast extract mannitol (YEM) medium. After modifying culture conditions, better performances can be achieved from these three strains, with increases of 21.7, 21.4, 16.7% in the EPS production and 12.1, 10.9, 8.3% in E24, respectively. When considered for strain CC-B-L1 and CC-IDD2w, the addition of 1.5% (v/v) of mannitol and 0.1% (v/v) of asparagine in YEM enhanced 42.9 and 34.7% in EPS production along with 28.8 and 37.5% higher in E24. The supplement of 2.0% (v/v) glucose and 0.2% (v/v) asparagine in YEM increased 65.2% of EPS and 38.3% of E24 in strain CC-GSB4. This is the first report demonstrating the optimization of diesel emulsification by EPS from root nodulating isolates, and these microbial agents might be used in the remediation of hydrocarbon contaminated soils in a near future.  相似文献   

14.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

15.
Jung YH  Kim IJ  Kim JJ  Oh KK  Han JI  Choi IG  Kim KH 《Bioresource technology》2011,102(15):7307-7312
Oil palm trunks are a possible lignocellulosic source for ethanol production. Low enzymatic digestibility of this type of material (11.9% of the theoretical glucose yield) makes pretreatment necessary. An enzymatic digestibility of 95.4% with insoluble solids recovery of 49.8% was achieved after soaking shredded oil palm trunks in ammonia under optimum conditions (80 °C, 1:12 solid-to-liquid ratio, 8 h and 7% (w/w) ammonia solution). Treatment with 60 FPU of commercial cellulase (Accellerase 1000) per gram of glucan and fermentation with Saccharomyces cerevisiae D5A resulted in an ethanol concentration of 13.3 g/L and an ethanol yield of 78.3% (based on the theoretical maximum) after 96 h. These results indicate that oil palm trunks are a biomass feedstock that can be used for bioethanol production.  相似文献   

16.
Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.  相似文献   

17.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   

18.
The biomass degrading enzymatic potential of 101 thermophilic bacterial strains isolated from a volcanic environment (Santorini, Aegean Sea, Greece) was assessed. 80?% of the strains showed xylanolytic activity in Congo Red plates, while only eight could simultaneously hydrolyze cellulose. Fifteen isolates were selected on the basis of their increased enzyme production, the majority of which was identified as Geobacilli through 16S rDNA analysis. In addition, the enzymatic profile was evaluated in liquid cultures using various carbon sources, a procedure that revealed lack of correlation on xylanase levels between the two cultivation modes and the inability of solid CMC cultures to fully unravel the cellulose degrading potential of the isolates. Strain SP24, showing more than 99?% 16S DNA similarity with Geobacillus sp. was further studied for its unique ability to simultaneously exhibit cellulase, xylanase, β-glucosidase and β-xylosidase activities. The first two enzymes were produced mainly extracellularly, while the β-glycosidic activities were primarily detected in the cytosol. Maximum enzyme production by this strain was attained using a combination of wheat bran and xylan in the growth medium. Bioreactor cultures showed that aeration was necessary for both enhanced growth and enzyme production. Aeration had a strong positive effect on cellulase production while it negatively affected expression of β-glucosidase. Xylanase and β-xylosidase production was practically unaffected by aeration levels.  相似文献   

19.
Summary Clostridium thermocellum ATCC 27405 (and its improved cellulase-producing mutant, AS-39) is an anaerobic thermophile that produces endo--glucanase and exo--glucanase when grown on cellobiose or cellulose as major carbon source (Shinmyo et al. 1979). The site of cellulase accumulation was at least 95% extracellular. Optimum conditions for endo--glucanase production in flasks included 1% (w/v) cellobiose, 0.2% (w/v) urea as a nitrogen source, 0.1 M morpholinopropane-sulfonic acid buffer, an initial pH of 7.4, and a yeast extract concentration of 0.6% (w/v). An improved medium (GS medium) was devised for future studies. Xylan was degraded by an extracellular enzyme (s) produced during cultivation on cellobiose, although C. thermocellum does not grow on xylan.  相似文献   

20.
Optimization of enzyme production from Aspergillus niger ATCC 6275 under both submerged and solid-substrate cultivation was investigated. Results from submerged cultivation using palm oil mill effluent revealed that pretreatment of ground palm cake did not improve enzyme production. Addition of 0.60g NH4NO3/l generated maximum activity of xylanase and cellulase (CMCase). The optimum aeration rate was 1.2 v/v min. Under solid-substrate cultivation, the results indicated that heating and alkali treatment of the ground palm cake gave no further improvement in enzyme production. The optimal N-source was 2% urea. Optimal initial moisture contents for xylanase and CMCase activities were 60% and 50% respectively, with temperature optima of 30°C and 35°C, respectively. The optimal inoculum size was 1× 108 spores/g palm cake with an initial pH of 4.5–5.0. The maximum activities of xylanase (282.9U/g) and CMCase (23.8U/g) were obtained under the optimum conditions. Solid-substrate cultivation was a better method for the production of enzyme, particularly xylanase, from A. niger ATCC 6275. The application of these enzymes to decanter effluent showed the separation of oil and grease and suspended solids from the effluent. This is comparable to the result achieved from using the commercial xylase preparation Meicelase and superior to the effect of Sumyzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号