首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of ATP to chloroplasts causes a reversible 25–30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at ?196°C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (Fo) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.  相似文献   

2.
Robert C. Jennings 《BBA》1984,766(2):303-309
The effect of removal of Mg2+ on the fluorescence properties of LHCP-PS-II has been examined by different methods: (a) by titration with the artificial quenchers of chlorophyll fluorescence, m-dinitrobenzene and DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone); (b) as a function of wavelengths absorbed preferentially by LHCP, compared with wavelengths relatively enriched in PS II absorbed light; (c) by measurement of the fluorescence induction parameters as a function of the Mg2+ concentration or the excitation wavelength (i.e., light absorbed preferentially by LHCP or relatively enriched in PS II absorbed wavelengths). The following conclusions are drawn. (a) In the presence of magnesium ions, energy-transfer coupling between LHCP and PS II is tight, which argues against the idea of a weakly coupled population of LHCP molecules. (b) On lowering the Mg2+ concentration of a chloroplast suspension: (1) the increased spillover of energy to PS-I involves virtually all LHCP-PS-II entities and not just a part, which is strongly quenched; (2) there is a decrease in LHCP-PS-II energy-transfer coupling and this occurs only at low Mg2+ concentrations (below 0.5 mM). This process therefore seems distinct from the spillover interaction; (3) the rate constant for energy transfer to PS-II reaction centers decreases and this seems independent of the decreased LHCP-PS-II energy coupling.  相似文献   

3.
Peter Horton  Michael T. Black 《BBA》1983,722(1):214-218
Fluorescence induction curves in chloroplasts phosphorylated by the thylakoid protein kinase activated at low light intensity and high chlorophyll concentration have been measured. At 5 mM Mg2+, phosphorylation did not preferentially quench variable fluorescence. At 1 mM, preferential quenching of variable fluorescence was observed, indicating a second effect of phosphorylation at low Mg2+ (Horton, P. and Black, M.T. (1982) Biochim. Biophys. Acta 680, 22–27). Comparison of the extent of fluorescence decrease and the resulting ratio of variable to maximum fluorescence after phosphorylation and after lowering Mg2+ concentration demonstrated a difference between these two mechanisms of lowering of fluorescence. The significance of these results in terms of how phosphorylation may alter membrane organization is discussed.  相似文献   

4.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

5.
The yield of P-700 photooxidation has been studied in isolated chloroplast membranes by measuring the extent of the flash-induced absorption increase at 820 nm (ΔA820) in the microsecond time range. The extent of ΔA820 induced by non-saturating laser flashes was increased by the following treatments. (1) Suspension of chloroplast membranes in Mg2+ free medium (plus 15 mM K+) which leads to unstacking of grana (as detected by a decrease in chlorophyll fluorescence). (2) Reduction of Q, the primary acceptor of Photosystem II, in the presence of 20 μM 3-(3,4 dichlorophenyl)-1,1-dimethylurea by a saturating xenon flash, fired 300 ms before the laser flash. (3) Phosphorylation of light harvesting chlorophyll ab-protein complex, which occurs in the presence of ATP after activation of protein kinase in the dark with NADPH and ferredoxin. We conclude that the Mg2+ concentration, the redox state of Q and the protein-phosphorylation all can control the photochemical efficiency of P-700 photooxidation in isolated chloroplasts, and we discuss these results in relation to control of excitation energy distribution between the two photosystems. We also discuss the significance of these results in relation to the regulation of photosynthetic electron transport in vivo.  相似文献   

6.
Peter Horton 《BBA》1981,635(1):105-110
The effect of alteration of redox potential on the kinetics of fluorescence induction in pea chloroplasts has been investigated. Potentiometric titration of the initial (Fi) level of fluorescence recorded upon shutter opening gave a two component curve, with Em(7) at ?20 mV and ?275 mV, almost, identical to results obtained using continuous low intensity illumination (Horton, P. and Croze, E. (1979) Biochim. Biophys. Acta 545, 188–201). The slow or tail phase of induction observed in the presence of DCMU can be eliminated by poising the redox potential at approx. 0 to +50 mV. At this potential Fi was increased by less than 10% and the higher potential quencher described above was only marginally reduced. The disappearance of the slow phase titrated as an n = 1 component with an Em(7) of +120 mV. Therefore it seems unlikely that the slow phase of fluorescence induction is due to photoreduction of the ?20 mV quencher. These results are discussed with reference to current ideas concerning heterogeneity on the acceptor side of Photosystem II.  相似文献   

7.
M. Hodges  J. Barber 《BBA》1984,767(1):102-107
The effect of Mg2+ concentration and phosphorylation of the light harvesting chlorophyll ab protein on the ability of DBMIB to quench chlorophyll fluorescence of isolated pea thylakoids has been studied. Over a wide range of Mg2+ concentrations (5?0.33 mM), the observed changes in fluorescence yield are mirrored by similar changes in the quenching ability of DBMIB, indicating that the cation-induced phenomenon involves alterations in radiative lifetimes. In contrast, phosphorylation at 10 mM Mg2+ brings about a lowering of the chlorophyll fluorescence yield, while having no effect on the quenching capacity of DBMIB. This result can be interpreted as a phosphorylation-induced decrease in PS II absorption cross-section. At Mg2+ levels between 5 and 1 mM, phosphorylation leads to a change in the quenching of fluorescence by DBMIB, when compared with non-phosphorylated thylakoids. At these cation levels, the degree of DBMIB-induced quenching cannot wholly account for the observed changes in chlorophyll fluorescence due to phosphorylation. It is concluded that the phosphorylation- and Mg2+-induced changes in fluorescence yield are independent but inter-related processes which involve surface charge screening as emphasised by the change in cation sensitivity of the DBMIB quenching before and after phosphorylation.  相似文献   

8.
9.
Kenneth Leto  Charles Arntzen 《BBA》1981,637(1):107-117
Despite the total loss of Photosystem II activity, thylakoids isolated from the green nuclear maize mutant hcf1-3 contain normal amounts of the light-harvesting chlorophyll ab pigment-protein complex (LHC). We interpret the spectroscopic and ultrastructural characteristics of these thylakoids to indicate that the LHC present in these membranes is not associated with Photosystem II reaction centers and thus exists in a ‘free’ state within the thylakoid membrane. In contrast, the LHC found in wild-type maize thylakoids shows the usual functional association with Photosystem II reaction centers. Several lines of evidence suggest that the free LHC found in thylakoids isolated from hcf1-3 is able to mediate cation-dependent changes in both thylakoid appression and energy distribution between the photosystems: (1) Thylakoids isolated from hcf1-3 and wild-type seedlings exhibit a similar Mg2+-dependent increase in the short/long wavelength fluorescence emission peak ratio at 77 K. This Mg2+ effect is lost following incubation of thylakoids isolated from either source with low concentrations of trypsin. Such treatment results in the partial proteolysis of the LHC in both membrane types. (2) Thylakoids isolated from both hcf1-3 and wild-type seedlings show a similar Mg2+ dependence for the enhancement of the maximal yield of room temperature fluorescence and light scattering; both Mg2+ effects are abolished by brief incubation of the thylakoids with low concentrations of trypsin (3) Mg2+ acts to reduce the relative quantum efficiency of Photosystem I-dependent electron transport at limiting 650 nm light in thylakoids isolated from hcf1-3. (4) The pattern of digitonin fractionation of thylakoid membranes, which is dependent upon structural membrane interactions and upon LHC in the thylakoids, is similar in thylakoids isolated from both hcf1-3 and wild-type seedlings. We conclude that the surface-exposed segment of the LHC, but not the LHC-Photosystem II core association, is necessary for the cation-dependent changes in both thylakoid appression and energy distribution between the two photosystems, and that the LHC itself is able to transfer excitation energy directly to Photosystem I in a Mg2+-dependent fashion in the absence of Photosystem II reaction centers. The latter phenomenon is equivalent to a cation-induced change in the absorptive cross-section of Photosystem I.  相似文献   

10.
Experiments are presented to show that the phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHC) induces structural reorganisation within the thylakoid membrane in response to the introduction of additional negative surface charges. The effect of cations of different valency on chlorophyll fluorescence measurements indicates that LHC-phosphorylation-induced reorganisation involves a change in the electrostatic screening capability of the added cation. At intermediate levels of cations (e.g., 1 or 2 mM Mg2+), which substantially stack non-phosphorylated membranes, it was found that membrane phosphorylation caused considerable unstacking as monitored by light scattering and electron microscopy. Concomitant with this was a large decrease in chlorophyll fluorescence indicative of randomisation of chlorophyll protein complexes which would result in an increase in energy transfer between the photosystems as well as an absorption cross-section change. At higher concentrations (e.g., above 5 mM Mg2+) a persistent ATP-induced decrease in chlorophyll fluorescence has been attributed to the displacement of charged phosphorylated LHC from the appressed granal to the non-appressed stromal lamellae, thus decreasing the absorption cross-section of Photosystem II. Under these circumstances only a small degree of unstacking was detected by light scattering and measurements of the percentage of thylakoid length which is stacked to form grana. However, when considered on a surface area basis, the structural changes observed can qualitatively account for the magnitude of the chlorophyll fluorescence quenching due to the lateral diffusion of LHC.  相似文献   

11.
Tetzuya Katoh  Elisabeth Gantt 《BBA》1979,546(3):383-393
Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3 : 0.5 : 0.3 M, respectiely) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 μmol O2/h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (?196°C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O2/einstein (605 nm), with a lesser change in the Vmax values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.  相似文献   

12.
A. Telfer  J. Barber  P. Heathcote  M.C.W. Evans 《BBA》1978,504(1):153-164
1. Photosystem I particles enriched in P-700 prepared by Triton X-100 treatment of chloroplasts show a light-induced increase in fluorescence yield of more than 100% in the presence of dithionite but not in its absence.2. Steady state light maintains the P-700, of these particles, in the oxidised state when ascorbate is present but in the presence of dithionite only a transient oxidation occurs.3. EPR data show that, in these particles, the primary electron acceptor (X) is maintained in the reduced state by light at room temperature only when the dithionite is also present. In contrast, the secondary electron acceptors are reduced in the dark by dithionite.4. Fluorescence emission and excitation spectra and fluorescence lifetime measurements for the constant and variable fluorescence indicate a heterogeneity of the chlorophyll in these particles.5. It is concluded that the variable fluorescence comes from those chlorophylls which can transfer their energy to the reaction centre and that the states PX and P+X are more effective quenchers of chlorophyll fluorescence than PX?, where P is P-700.  相似文献   

13.
Simultaneous fluorescence and photoacoustic measurements have been used to study the effects of metal ions (copper, lead, and mercury) during dark incubation of thylakoid membranes. The values of the chlorophyll fluorescence parameters Fo (initial fluorescence yield with the reaction centers in the open state), Fm (maximal fluorescence yield), Ft (steady state fluorescence yield) and the calculated parameters, o (maximal quantum yield of Photosystem II photochemistry) and t (actual quantum yield of Photosystem II photochemistry), strongly decreased in the presence of the metal ions coinciding with an increase in the non-photochemical deexcitation rate constant k(N). It was observed that photosynthetic energy storage measured by photoacoustic spectroscopy also decreased but a large portion of energy storage remained unaffected even at the highest metal ion concentrations used. A maximal inhibition of photosyntheti c energy storage of 80% and 50% was obtained with Hg2+ and Cu2+-treated thylakoids, respectively, while energy storage was insensitive to Pb2+. The results are consistent with the known predominant inhibition of the donor side of Photosystem II by the metal ions. The insensitive portion of energy storage is attributed to the possible recurrence of cyclic electron transport around Photosystem II that would depend on the extent of inhibition produced on the acceptor side by the metal ion used.  相似文献   

14.
15.
Single-photon timing with picosecond resolution is used to investigate the effect of Mg2+ on the room-temperature fluorescence decay kinetics in broken spinach chloroplasts. In agreement with an earlier paper (Haehnel, W., Nairn, J.A., Reisberg, P. and Sauer, K. (1982) Biochim. Biophys. Acta 680, 161–173), we find three components in the fluorescence decay both in the presence and in the absence of Mg2+. The behavior of these components is examined as a function of Mg2+ concentration at both the F0 and the Fmax fluorescence levels, and as a function of the excitation intensity for thylakoids from spinach chloroplasts isolated in the absence of added Mg2+. Analysis of the results indicates that the subsequent addition of Mg2+ has effects which occur at different levels of added cation. At low levels of Mg2+ (less than 0.75 mM), there appears to be a decrease in communication between Photosystem (PS) II and PS I, which amounts to a decrease in the spillover rate between PS II and PS I. At higher levels of Mg2+ (about 2 mM), there appears to be an increase in communication between PS II units and an increase in the effective absorption cross-section of PS II, probably both of these involving the chlorophyll ab light-harvesting antenna.  相似文献   

16.
Phosphorylation in vitro of the light-harvesting chlorophyll ab protein complex associated with Photosystem II (LHCII) resulted in the lateral migration of a subpopulation of LHCII from the grana to the stroma lamellae. This movement was characterized by a decrease in the chlorophyll ab ratio and an increase in the 77 K fluorescence emission at 681 nm in the stroma lamellae following phosphorylation. Polyacrylamide gel electrophoresis indicated that the principal phosphoproteins under these conditions were polypeptides of 26–27 kDa. These polypeptides increased in relative amount in the stroma lamellae and decreased in the grana during phosphorylation. Pulse/chase experiments confirmed that the polypeptides were labelled in the grana and moved to the stroma lamellae in the subsequent chase period. A fraction at the phospho-LHCII, however, was unable to move and remained associated with the grana fraction. LHCII which moved out into the stroma lamellae effectively sensitized Photosystem I (PS I), since the ability to excite fluorescence emission at 735 nm (at 77 K) by chlorophyll b was increased following phosphorylation. These data support the ‘mobile antenna’ hypothesis proposed by Kyle, Staehelin and Arntzen (Arch. Biochem. Biophys. (1983) 222, 527–541) which states that the alterations in the excitation-energy distribution induced by LHCII phosphorylation are, in part, due to the change in absorptive cross-section of PS II and PS I, resulting specifically from the movement of LHCII antennae chlorophylls from the PS-II-enriched grana to the PS-I-enriched stroma lamellae.  相似文献   

17.
Lowering the pH of the incubation medium to pH 5.4 leads to grana formation morphologically similar to that induced by metal cations. The same phenomenon is observed in EDTA-washed chloroplasts, indicating that it is not due in part to electrostatic ‘masking’ by residual cations associated with the membranes. Digitonin fractionation studies have indicated that the distribution of the major chlorophyll-protein complexes between granal and stromal membrane regions is similar at pH 5.4 in the absence of Mg2+, and at pH 7.4 in the presence of Mg2+. Chlorophyll fluorescence induction studies have indicated that the primary photochemistry of Photosystem II (PS II) is stimulated by lowering the pH to 5.4, just as it is upon metal cation addition at higher pH values. The failure to observe such an increase at pH 5.4 by measuring electron transport to ferricyanide is attributed to a combination of an inhibition by this pH of electron transport at a site after Q reduction and an increase in the number of PS II centres detached from the plastoquinone pool. We conclude that the stacked configuration of chloroplast membranes leads to increased PS II primary photochemistry, which is most simply explained in terms of a redistribution of excitation energy towards PS II.  相似文献   

18.
Many of the core proteins in Photosystem II (PS II) undergo reversible phosphorylation. It is known that protein phosphorylation controls the repair cycle of Photosystem II. However, it is not known how protein phosphorylation affects the partial electron transport reactions in PS II. Here we have applied variable fluorescence measurements and EPR spectroscopy to probe the status of the quinone acceptors, the Mn cluster and other electron transfer components in PS II with controlled levels of protein phosphorylation. Protein phosphorylation was induced in vivo by varying illumination regimes. The phosphorylation level of the D1 protein varied from 10 to 58% in PS II membranes isolated from pre-illuminated spinach leaves. The oxygen evolution and QA to QB(QB ) electron transfer measured by flash-induced fluorescence decay remained similar in all samples studied. Similar measurements in the presence of DCMU, which reports on the status of the donor side in PS II, also indicated that the integrity of the oxygen-evolving complex was preserved in PS II with different levels of D1 protein phosphorylation. With EPR spectroscopy we examined individual redox cofactors in PS II. Both the maximal amplitude of the charge separation reaction (measured as photo-accumulated pheophytin) and the EPR signal from the QA Fe2+ complex were unaffected by the phosphorylation of the D1 protein, indicating that the acceptor side of PS II was not modified. Also the shape of the S2 state multiline signal was similar, suggesting that the structure of the Mn-cluster in Photosystem II did not change. However, the amplitude of the S2 multiline signal was reduced by 35% in PS II, where 58% of the D1 protein was phosphorylated, as compared to the S2 multiline in PS II, where only 10% of the D1 protein was phosphorylated. In addition, the fraction of low potential Cyt b 559 was twice as high in phosphorylated PS II. Implications from these findings, were precise quantification of D1 protein phosphorylation is, for the first time, combined with high-resolution biophysical measurements, are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Yasusi Yamamoto  Bacon Ke 《BBA》1980,592(2):285-295
In Photosystem-II reaction-center particles (TSF-IIa) fractionated from spinach chloroplasts by Triton X-100 treatment, divalent cations appear to regulate electron-transport reactions. Oxidation of cytochrome b-559 after illumination of the particles was accelerated by the presence of Mg2+, whereas photoreduction of 2,6-dichlorophenolindophenol (DCIP) by diphenyl carbazide was inhibited, both at a half-effective concentration of Mg2+ of approx. 0.1 mM.The site of regulation was shown to be on the oxidizing side of Photosystem II, near P-680, based on the effects of actinic-light intensity and nature of the electron donors on DCIP photoreduction. Mg2+ was effective in quenching chlorophyll fluorescence in TSF-IIa particles, but the quenching was sensitive to the presence of 3(3,4-dichloropheny)-1,1-dimethylurea. In the reactioncenter (core) complex of Photosystem II, where the light-harvesting chlorophyll-protein complex is absent, there seems to be no regulation by Mg2+ on excitation-energy distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号