首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of deoxyhemoglobin with the red cell membrane is characterized by comparing the affinity of deoxyhemoglobin for the membrane with that of oxyhemoglobin. The two techniques used, namely light scattering induced changes and quenching of the fluorescence intensity of a membrane embedded probe, demonstrate that deoxyhemoglobin exhibits a much lower affinity for the membrane than that of oxyhemoglobin. The binding constant of 2×10 M?1 calculated for deoxyhemoglobin at 5 mM phosphate buffer and pH=6.0 is two orders of magnitude lower than the one calculated for oxyhemoglobin. It is estimated that under physiological conditions the only species capable of interacting with the membrane is the oxyhemoglobin.  相似文献   

2.
Lysozyme, cytochrome c, poly(l-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(l-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12–20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(l-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20–30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers.  相似文献   

3.
Time dependence of fluorescence enhancement of probes after addition to lipid vesicles has been used to investigate the position of chromophores in the lipid bilayer. Incorporation studies of a series of n-(9-anthroyloxy) fatty acids (n = 2, 2, 12 and 16) and 1,6-diphenylhexatriene in dipalmitoyl phosphatidylcholine vesicles are described. The activation energies for incorporation of these several lipid-mimic type fluorescent probes have been measured. Results show that the activation energy is a function of the distance of the anthracene moiety (chromophore) from the polar end of the probe and the length of the acyl portion of the probe. An average insertion energy of 0.6 kcal/carbon is seen for these fatty acid probes. The activation energy of 1,6-diphenylhexatriene, a factor of 2 greater than that of 16-(9-anthroyloxy)palmitic acid, is consistent with locating 1,6-diphenyl-hexatriene in the middle of the bilayer.  相似文献   

4.
5.
6.
Phosphatidylserine (PtdSer) is made in mammalian cells by two PtdSer synthases, PSS1 and PSS2. In the plasma membrane PtdSer is normally localized on the inner leaflet but undergoes transbilayer movement during apoptosis and becomes exposed on the cell surface. We induced apoptosis with staurosporine in four Chinese hamster ovary (CHO) cell lines that are deficient in PSS1 and/or PSS2 to determine if PtdSer generated by either of these enzymes is required for externalization on the cell surface during apoptosis. The onset of apoptosis was confirmed by the appearance of morphological changes and DNA fragmentation while the plasma membrane remained largely intact. In all cell lines, regardless of their content of PSS1 and/or PSS2, apoptosis occurred to approximately the same extent, and within approximately the same time frame, as in parental CHO-K1 cells. The exposure of PtdSer on the cell surface was assessed by annexin V labeling and flow cytometry. Cells that were deficient in either PSS1 or PSS2, as well as cells that were deficient in both PSS1 and PSS2, externalized normal amounts of PtdSer. Our study demonstrates, that reduction of in vitro serine-exchange activity, even by 97%, does not restrict the externalization of PtdSer during apoptosis. Moreover, a normal level of expression of PSS1 and/or PSS2 is not required for generating the pool of PtdSer externalized during apoptosis.  相似文献   

7.
Twenty six phenolic substances including representatives of the families, flavanones, flavanols and procyanidins, flavonols, isoflavones, phenolic acids and phenylpropanones were investigated for their effects on lipid oxidation, membrane fluidity and membrane integrity. The incubation of synthetic phosphatidylcholine (PC) liposomes in the presence of these phenolics caused the following effects: (a) flavanols, their related procyanidins and flavonols were the most active preventing 2,2'-azo-bis (2,4-dimethylvaleronitrile) (AMVN)-induced 2-thiobarituric acid-reactive substances (TBARS) formation, inducing lipid ordering at the water-lipid interface, and preventing Triton X-100-induced membrane disruption; (b) all the studied compounds inhibited lipid oxidation induced by the water-soluble oxidant 2,2'-azo-bis (2-amidinopropane) (AAPH), and no family-related effects were observed. The protective effects of the studied phenolics on membranes were mainly associated to the hydrophilicity of the compounds, the degree of flavanol oligomerization, and the number of hydroxyl groups in the molecule. The present results support the hypothesis that the chemical structure of phenolics conditions their interactions with membranes. The interactions of flavonoids with the polar head groups of phospholipids, at the lipid-water interface of membranes, should be considered among the factors that contribute to their antioxidant effects.  相似文献   

8.
Glycated hemoglobin (HbA1c) is formed by a nonenzymatic reaction of glucose with the N-terminal valine of adult hemoglobin's beta-chain. The amount of HbA1c reflects the average concentration of glucose variation level over the preceding 2 to 3 months. Because the boronate has antibody mimicking for HbA1c, often it is used to detect HbA1c. However, factors such as the ratio of the phenylboronic acid derivatives and diol composition, the pH of the solution, and the stereostructure of phenylboronic acid derivatives could influence the interactions between phenylboronic acid derivatives and diol composition. In this study, the factors were evaluated using surface plasmon resonance (SPR). The results show that pH value is an important factor affecting HbA1c and phenylboronic acid to form the complex and Lewis bases. This could change the stereostructure of phenylboronic acid to form B(OH)(3) for binding with saccharine easily. In addition, linear response appeared in HbA1c in the range of 0.43 to 3.49 mug/ml, and the detection limit was 0.01 microg/ml. The results also demonstrated that an SPR biosensor can be used as a sensitive technique for improving the accuracy and correctness of HbA1c measurement.  相似文献   

9.
Freshly isolated rat heptocytes display about 36 700 high-affinity sites to which deferric transferrin may bind with an apparent association constant of 1.62·107 1·mol?1.Uptake of iron from diferric transferrin by hepatocytes is linear with time and is accelerated at increased differric transferrin concentrations.Apotransferrin is able to decrease net iron uptake by hepatocytes from diferric transferrin by a process not dependent on the apotransferrin concentrations used or on the rate at which the cells take up iron. Immunoprecipitation of the apotransferrin during these incubations indicates that iron is being released from the cells to apotransferrin at the same time as iron is being taken up from diferric transferrin. The simultaneous uptake and release of iron, and the insensitivity to apotransferrin concentration, suggest that the processes of iron uptake and release occur via separate mechanisms. The effect of apotransferrin on net retention of iron may be one way in which the in vivo distribution of iron between sites of storage and utilization is controlled.  相似文献   

10.
The distribution of a small lipid soluble molecule across a lipid bilayer has been determined using fluorescence quenching techniques. The neutral form of the amine, N,N-dimethylaniline (DMA) quenches the fluorescence of a series of n-(9-anthroyloxy) fatty acids (n = 2,6,9,12,16) which place a fluorophore at a graded series of positions from the surface to the centre of the lipid bilayer. A method is described for determining the partition coefficient of a quencher at each transverse position. The results show that DMA is located at all depths within the bilayer leaflet but that it is concentrated at the bilayer centre and to a lesser extent at the bilayer surface.  相似文献   

11.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

12.
The relative kinetics of intermixing and release of liposome aqueous contents during Ca2+-induced membrane fusion has been investigated. Fusion was monitored by the Tb-dipicolinic acid (DPA) fluorescence assay. Release was followed by the relief of self-quenching of carboxyfluorescein or by Tb fluorescence, with essentially identical results. Fusion of large unilamellar vesicles (LUV) made of phosphatidylserine (PS) in 100 mM NaCl (pH 7.4) at 25°C was initially non-leaky, whereas the fusion of small unilamellar vesicles (SUV) was accompanied by partial release of contents. After several rounds of fusion, the internal aqueous space of the vesicles collapsed. The rate of intermixing of lipids, measured by a resonance energy transfer assay, and the rate of coalescence of aqueous contents during fusion were similar over a range of Ca2+ concentrations. Most of the aqueous contents were retained after the fusion of SUV (PS) in 5 mM NaCl and 1 mM Ca2+. LUV made of a 1:1 mixture of Bacillus subtilis cardiolipin and dioleoylphosphatidylcholine went through about two rounds of fusion in the presence of Ca2+ at 10°C, with complete retention of contents. Similar results were obtained with vesicles composed of phosphatidate/PS/phosphatidylethanolamine/cholesterol (1:2:3:2) in the presence of Ca2+ and synexin at 25°C. These results emphasize the diversity of the relative kinetics of fusion and release in different phospholipid vesicle systems under various ionic conditions, and indicate that the initial events in the fusion of LUV are in general, non-leaky.  相似文献   

13.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

14.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

15.
Twenty six phenolic substances including representatives of the families, flavanones, flavanols and procyanidins, flavonols, isoflavones, phenolic acids and phenylpropanones were investigated for their effects on lipid oxidation, membrane fluidity and membrane integrity. The incubation of synthetic phosphatidylcholine (PC) liposomes in the presence of these phenolics caused the following effects: (a) flavanols, their related procyanidins and flavonols were the most active preventing 2,2′-azo-bis (2,4-dimethylvaleronitrile) (AMVN)-induced 2-thiobarituric acid-reactive substances (TBARS) formation, inducing lipid ordering at the water-lipid interface, and preventing Triton X-100-induced membrane disruption; (b) all the studied compounds inhibited lipid oxidation induced by the water-soluble oxidant 2,2′-azo-bis (2-amidinopropane) (AAPH), and no family-related effects were observed. The protective effects of the studied phenolics on membranes were mainly associated to the hydrophilicity of the compounds, the degree of flavanol oligomerization, and the number of hydroxyl groups in the molecule. The present results support the hypothesis that the chemical structure of phenolics conditions their interactions with membranes. The interactions of flavonoids with the polar head groups of phospholipids, at the lipid–water interface of membranes, should be considered among the factors that contribute to their antioxidant effects.  相似文献   

16.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. The organization of membrane-bound melittin has earlier been shown to be dependent on the physical state and composition of membranes. In this study, we covalently labeled the N-terminal (Gly-1) and Lys-7 of melittin with an environment-sensitive fluorescent probe, the NBD group, to monitor the influence of negatively charged lipids and cholesterol on the organization and dynamics of membrane-bound melittin. Our results show that the NBD group of melittin labeled at its N-terminal end does not exhibit red edge excitation shift in DOPC and DOPC/DOPG membranes, whereas the NBD group of melittin labeled at Lys-7 exhibits REES of approximately 8 nm. This could be attributed to difference in membrane microenvironment experienced by the NBD groups in these analogs. Interestingly, the membrane environment of the NBD groups is sensitive to the presence of cholesterol, which is supported by time-resolved fluorescence measurements. Importantly, the orientation of melittin is found to be parallel to the membrane surface as determined by membrane penetration depth analysis using the parallax method in all cases. Our results constitute the first report to our knowledge describing the orientation of melittin in cholesterol-containing membranes. These results assume significance in the overall context of the role of membrane lipids in the orientation and function of membrane proteins and peptides.  相似文献   

17.
(1) The effect of four active antisera against plastocyanin on Photosystem I-driven electron transport and phosphorylation was investigated in spinach chloroplasts. Partial inhibition of electron transport and stimulation of plastocyanin-dependent phosphorylation were sometimes observed after adding amounts of antibodies which were in large excess and not related to the plastocyanin content of the chloroplasts. This indicates effects of the antibodies on the membrane. (2) The antibodies against plastocyanin neither directly nor indirectly agglutinated unbroken chloroplast membranes. (3) The plastocyanin content of right-side-out and inside-out thylakoid vesicles isolated by aqueous polymer two-phase partition from chloroplasts disrupted by Yeda press treatment was determined by quantitative rocket electroimmunodiffusion. Right-side-out vesicles retained about 25%, inside-out vesicles none of the original amount of plastocyanin. (4) The effect of externally added plastocyanin on the reduction of P-700 was studied by monitoring the absorbance changes at 703 nm after a long flash. In inside-out vesicles P-700 was reduced by the added plastocyanin but not in right-side-out vesicles and class II chloroplasts. These results provide strong evidence for a function of plastocyanin at the internal side of the thylakoid membrane.  相似文献   

18.
T-2 toxin is taken up by lymphocytes in 10–15 min in a saturable manner. Uptake is dependent on temperature and partially on the availability of energy. Approx. 105 molecules of T-2 toxin are bound per cell, having a mean affinity constant, Ka = 1.6·107 M?1. The toxin is rapidly dissociated from the cell to leave approx. 10–15% of the original loading in 1 h. It is concluded that T-2 toxin uptake and release do not follow conventional mechanisms.  相似文献   

19.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

20.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号