首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The ouabain-insensitive, Mg2+-dependent, Na+-stimulated ATPase activity present in fresh basolateral plasma membranes from guinea-pig kidney cortex cells (prepared at pH 7.2) can be increased by the addition of micromolar concentrations of Ca2+ to the assay medium. The Ca2+ involved in this effect seems to be associated with the membranes in two different ways: as a labile component, which can be quickly and easily 'deactivated' by reducing the free Ca2+ concentration of the assay medium to values lower than 1 microM; and as a stable component, which can be 'deactivated' by preincubating the membranes for periods of 3-4 h with 2 mM EDTA or EGTA. Both components are easily activated by micromolar concentrations of Ca2+. The Ka of the system for Na+ is the same, 8 mM, whether only the stable component or both components, stable and labile, are working. In other words, the activating effect of Ca2+ on the Na+-stimulated ATPase is on the Vmax, and not on the Ka of the system for Na+. The activating effect of Ca2+ may be related to some conformational change produced by the interaction of this ion with the membranes, since it can also be obtained by resuspending the membranes at pH 7.8 or by ageing the preparations. Changes in the Ca2+ concentration may modulate the ouabain-insensitive, Na+-stimulated ATPase activity. This modulation could regulate the magnitude of the extrusion of Na+ accompanied by Cl- and water that these cells show, and to which the Na+-ATPase has been associated as being responsible for the energy supply of this mode of Na+ extrusion.  相似文献   

2.
Two ATPase activities, a Na+-ATPase and a (Na+ + K+)-ATPase, have been found associated with sheets of basolateral plasma membranes from guinea-pig small intestinal epithelial cells. The specific activity of the former is 10-15% of the latter. The two ATPase activities differ in their affinity for Na+, their optimal pH, their K+ requirement and particularly in their behaviour in the presence of some inhibitors and of Ca2+. Thus the Na+-ATPase is refractory to ouabain but it is strongly inhibited by ethacrynic acid and furosemide, whilst the (Na+ + K+)-ATPase is totally suppressed by ouabain, partially by ethacrynic acid and refractory to furosemide. In addition, the Na+-ATPase is activated by micromolar concentrations of calcium and by resuspension of the membrane preparation at pH 7.8. The Na+-ATPase is only stimulated by sodium and to a lesser extent by lithium; however, this stimulation is independent of the anion accompanying Na+. The latter rules out the participation of an anionic ATPase. The relation between the characteristics of the sodium transport mechanism in basolateral membrane vesicles (Del Castillo, J.R. and Robinson, J.W.L. (1983) Experientia 39,631) and those of the two ATPase activities present in the same membranes, allow us to postulate the existence of two separate sodium pumps in this membranes. Each pump would derive the necessary energy for active ion transport from the hydrolysis of ATP, catalyzed by different ATPase systems.  相似文献   

3.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

4.
In the present work we demonstrate the existence of a Na+-stimulateo, Mg2+-dependent ATPase activity, which is insensitive to ouabain, and which is 100% inhibited by 1.5 mM ethacrynic acid in freshly prepared, basal-lateral enriched, plasma-membrane fractions obtained from guinea-pig kidney cortex slices (which are mainly made up by proximal tubules). This ATPase activity has characteristics similar to those described previously in a microsomal fraction of the guinea-pig kidney cortex by a procedure which required ageing of the preparation for more than two weeks (Proverbio, F., Condrescu-Guidi, M. and Whittembury, G. (1975) Biochim. Biophys. Acta 394, 281–292), it does not seem to be due to some partially modified activity of the Mg2+-ATPase, the (Na+ + K+)-or the Ca2+-ATPase activities present in this tissue. It seems to be due to the activity of another system, which is located on the basal-lateral membrane of the kidney tubular cells.  相似文献   

5.
P Gmaj  H Murer  E Carafoli 《FEBS letters》1982,144(2):226-230
Surface membrane fractions from Paramecium tetraurelia cells contain a calmodulin-stimulated Ca2+-ATPase responding to low levels of free Ca2+ and with features characteristic of a membrane-bound ATPase responding to low levels of free Ca2+ and with features characteristics of a membrane-bound ATPase. Among the different strains analyzed this enzyme was practically absent selectively from the ‘non-discharge” mutant nd9—28°C (from J. Beisson); if cultured at a permissive temperature (18°C), this strain showed identical values of calmodulin-stimulated Ca2+-ATPase activity as wild-type cells (7S) or strains with mutations which do not affect exocytosis performance. We conclude that this calmodulin-stimulated Ca2+-activated ATPase might be a prerequisite for membrane fusion in the course of exocytosis performance.  相似文献   

6.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

7.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

8.
A procedure for preparing basolateral membrane vesicles from rat renal cortex was developed by differential centrifugation and Percoll density gradient centrifugation, and the uptake of d-[3H]glucose into these vesicles was studied by a rapid filtration technique. (Na+ + K+)-ATPase, the marker enzyme for basolateral membranes, was enriched 22-fold compared with that found in the homogenate. The rate of d-glucose uptake was almost unaffected by Na+ gradient (no overshoot).  相似文献   

9.
Isolated basolateral plasmamembrane vesicles from rat duodenum epithelial cells exhibit ATP-dependent calcium-accumulation and Ca2+-dependent ATPase activity. Calcium accumulation stimulated by ATP is prevented by the calcium ionophore A23187, inhibited 80% by 0.1 mM orthovanadate but is not effected by oligomycin. Calcium accumulation is not observed with the substrate β-γ-(CH2)-ATP, ADP and p-nitrophenyl phosphate. Kinetic studies reveal an apparent Km of 0.2 μM Ca2+ and a Vmax of 5.3 nmol Ca2+/min per mg protein for the ATP-dependent calcium-uptake system. Calmodulin and phenothiazines have no effect on calcium accumulation in freshly prepared membranes, but small effects are inducable after a wash with a 5 mM EGTA. The kinetic parameters of Ca2+-ATPase are: Km = 0.25 μM Ca2+ and Vmax = 19.2 nmol Pi/min per mg protein. Three techniques, osmotic shock, treatment with Triton X-100 or the channel-forming peptide alamethacin, reveal that about 40% of the vesicles are resealed. Assuming that half of the resealed vesicles have an inside-out orientation, the Vmax of ATP-dependent calcium uptake amounts to 25 nmol Ca2+/min per mg protein and of the Ca2+-ATPase to 23 nmol Pi/min per mg protein. The close correlation between kinetic parameters of Ca2+-ATPase and ATP-dependent calcium-transport strongly suggests that both systems are expressions of a Ca2+-pump located in duodenal basolateral plasma membranes.  相似文献   

10.
Summary The (Ca2+ + Mg2+) ATPase which serves as a Ca2+ pump in the kidney basolateral membranes is essential to the maintenance of an intracellular Ca2+ concentration optimal for kidney function. Since atrial natriuretic peptide (ANP) is known to participate in the Ca2+ homeostasis mechanism, altered levels of ANP in diabetes may vary the pump activity and consequently the kidney function. In order to examine the modulatory role of ANP on (Ca2+ + Mg2+) ATPase in short- (6 weeks) and long-term (6 months) diabetes, rats were injected with streptozotocin (65 mg/kg body wt, i.v.). At 6 weeks, the plasma ANP was decreased whereas, ANP-receptor binding in the kidney basolateral membrane was increased. In contrast, there was an increased plasma ANP and decreased ANP receptor binding at 6 months. Insulin treatment to diabetic animals normalized these parameters. The (Ca2+ + Mg2+) ATPase activity was unchanged both at 6 weeks and 6 months. Our results demonstrate that the unchanged Ca2+ pump activity in short-term and long-term diabetes serves to maintain the Ca2+ homeostasis in the kidney cells and thus may maintain the hyperfiltration state in diabetes. Unaltered (Ca2+ + Mg2+) ATPase is achieved by the initial up-regulation and subsequent down-regulation of the ANP receptors.  相似文献   

11.
The effects of extracellular Ca2+ concentration and the putative antagonist of intracellular Ca2+ movement, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) on platelet phospholipase activity and thromboxane B2 synthesis were examined in rabbit platelets stimulated by platelet activating factor, thrombin and ionophore A23187. TMB-8 markedly inhibited the platelet activating factor-induced decrease in [14C]arachidonate content in platelet phsophatidylacholine and phosphatidylinositol, while showing minimal effects on thrombin-induced phospholipase activation. A23187 stimulation of these processes was inhibited to an intermediated degree by TMB-8. In contrast, extracellular Ca2+ removal inhibited phospholipase activity to a similar degree with all three stimuli. Moreover, the threshold concentration of extracelullar Ca2+ for phospholiphase activation, as measured by thromboxane B2 synthesis, was similar for platelet activating factor- and thrombin-stimulated platelets. The data provide evidence that, while platelet activating factor and thrombin may, to some extent, have similar requirements for extracellular Ca2+, they utilize a TMB-8 sensitive step to different degrees during activation of platelet phospholipase.  相似文献   

12.
The (Ca2+ + Mg2+-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tej?ka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81–88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 μM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

13.
14.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35–50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

15.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

16.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

17.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

18.
19.
The measurement of chlortetracycline fluorescence was employed as a probe for measuring the process to calcium transport by human erythrocyte inside-out vesicles. Chlortetracycline is a divalent metal chelator which increases its fluorrescence when bound to calcium in the presence of a membrane. Addition of calcium and ATP to inside out vesicles in the presence of chlortetracycline increased the chlortetracycline fluorescence as a function of time following an initial delay. Only after a threshold level of calcium had been accumulated did the fluorescence increase. The presence of both ATP and calcium were required. The addition of calmodulin increased the rate and absolute magnitude of the chlortetracycline fluorescence change. Similarly, calmodulin stimulated the rate and extent of 45Ca transport by inside-out vesicles. Moreover, the presence of saponin abolished both chlortetracycline fluorescence change and 45Ca uptake; a non-hydrolyzable ATP analog would not substitute for ATP in either 45Ca transport or chlortetracycline fluorescence experiments. Comparison between the slopes of the linear portions of chlortetracycline fluorescence change and calcium transport time courses at varied free calcium concentrations showed a consistent ratio between the slopes. This suggests that calcium transport change can be calibrated by employing chlortetracycline fluorescence. Based on this data, it is concluded that chlortetracycline fluorescence is a rapid and accurate method for monitoring calcium transport by human erythrocyte inside-out vesicles.  相似文献   

20.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号