共查询到20条相似文献,搜索用时 0 毫秒
1.
The aromatic polyene antibiotic levorin A2 forms ion channels permeable to monovalent cations, in lipid membranes containing cholesterol or ergosterol. Channel conductivity is in the range 0.3–0.5 pS. The channel has two main states: conducting (open) and nonconducting (closed). The potential-dependent formation of levorin A2 channels is observed in lipid membranes. The system responsible for the ion-channel selectivity is localized on the hydrophilic side of the lactone ring of the polyene molecule. 相似文献
2.
The low level of endogenous fatty acid synthesis in Acholeplasma laidlawii A strain EF22 was found to be caused by a deficiency of pantetheine in the lipid-depleted growth medium. By supplementing the oleic acid-containing medium with increasing concentrations of pantetheine, saturated fatty acid synthesis was stimulated (having an apparent of 5 μM for pantetheine) and the incorporation of endogenously synthesized fatty acids in membrane lipids increased markedly. Furthermore, carotenoid biosynthesis was stimulated. Exogenous palmitic acid was found to inhibit partially the endogenous fatty acid synthesis. A gradual stimulation of fatty acid synthesis was accompanied by a linear increase in the molar proportion between the two dominating membrane glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol. The total amount of charged membrane lipids decreased upon increasing the degree of fatty acid saturation. These regulations are discussed in terms of membrane stability, and influence of membrane molecular ordering and surface charge density on lipid polar head group synthesis. 相似文献
3.
Daniela Schiopu Sophie B. George John Castell 《Journal of experimental marine biology and ecology》2006,328(1):47-75
This study investigated the effect of single and mixed algal diets on growth, fatty acid composition and ingestion rates for Dendraster excentricus larvae. Larvae were assigned to three single algal diet treatments Isochrysis galbana, Dunaliella tertiolecta or Rhodomonas sp. and four mixed algal diet treatments D. tertiolecta and Rhodomonas, I. galbana and D. tertiolecta, I. galbana and Rhodomonas, D. tertiolecta, Isochrysis galbana and Rhodomonas sp. Small amounts (0.36-0.6%) of stearic acid (18:0) were seen in the three algae used but a relatively large percentage (7-25%) of this SAFA was found in Dendraster larvae. The alga D. tertiolecta had the highest percentage (51.7%) of the short chain polyunsaturated fatty acid (PUFA) linolenic acid 18:3(n-3) and trace amounts (0.02-0.14%) of the long chain PUFAs eicosapentanoic (EPA, 20:5(n-3) and docosahexanoic acids (DHA, 22:6(n-3)). However, sand dollar larvae demonstrated the ability to elongate and desaturate shorter chain (18 carbon) polyunsaturated fatty acids (PUFA) to longer chain (20 carbon) n-3 PUFA. Thus high levels of 18:3(n-3) in D. tertiolecta led to high levels of EPA and low levels of 18:3(n-3) in Dendraster larvae fed this diet. Rhodomonas sp. had the highest percentage of stearidonic acid (18:4(n-3), 38.14%) and EPA (10.6%). Despite high levels of 18:4(n-3) in Rhodomonas sp. this acid was absent or found at very low levels in larvae fed this alga, or any combination of this alga. I. galbana had the highest percentage of DHA(14.3%) but was almost devoid of EPA (0.43%). Although Rhodomonas sp. and I. galbana had high levels of EPA and DHA sand dollar larvae did not incorporate higher levels of these long chain PUFAs into their lipids compared to those fed the alga D. tertiolecta. Dendraster larvae synthesized a number of 20 and 22 carbon non-methylene interrupted dienes (NMID), with levels increasing with larval stage. Higher ingestion rates were observed for Dendraster larvae fed single algal diets (Rhodomonas sp. or D. tertiolecta) and lower ingestion rates for those fed mixed algal diets. The highest ingestion rates were for 8-arm Dendraster larvae fed the large alga Rhodomonas sp. presented as a single algal diet. When fed a combination of three algae, selection of particles varied slightly depending on stage with 8-arm larvae ingesting slightly more of the larger algal cell in the mixture than 6-arm larvae. The present study suggests that regardless of the ratios given larvae might have an optimum ratio of different sized particles at which they can feed. The mixed algal diet of I. galbana and D. tertiolecta was the best algal diet leading to significantly larger larvae with high survival and development to metamorphosis. The single algal diets of Rhodomonas sp. or Dunaliella tertiolecta were the second and third best algal diets based on growth and survival to metamorphosis. 相似文献
4.
To study the interaction of voltage-sensitive Na+-channels with membrane lipids, the phospholipid and fatty acid composition of highly purified membrane fragments from the remarkably differentiated plasma membrane of Electrophorus electricus has been analyzed. After density gradient fractionation and carrier free electrophoresis, fractions with up to 30 pmol tetrodotoxin binding/mg protein can be obtained, which may correspond to a 50% pure preparation of the extrasynaptic part of the excitable face. Phospholipid classes and cholesterol are separated by one-dimensional thin-layer chromatography in acidic and alkaline solvent systems. The following mean molar contents are found: 40% phosphatidylcholine, 23% phosphatidylserine, 30% phosphatidylethanolamine and 7% sphingomyelin. In a series of 11 animals, significant deviations from these mean values have been observed. The fatty acid composition of the phospholipids has been determined by gas chromatography. Phosphatidylcholine contains more than 50% 16:0, and about 20% unsaturated fatty acids in the C-18 group. Compared to other plasma membrane fractions, this phospholipid is the least differentiated. By contrast, phosphatidylethanolamine and phosphatidylserine show many characteristics in different membrane fractions, especially in their unsaturated components representing more than 50%. 22:6, as the major constituent in these fractions, accounts for a quarter to a third of all fatty acids in these fractions. 18:0 is the main saturated component in these two phospholipids with abundances of typically a quarter or less of all fatty acids. Knowledge of the lipid composition of these excitable membranes may help to conserve binding and structural properties when analyzing lipid-sensitive Na+-channels in vitro. It is also useful as a guideline for systematic reconstitution studies. 相似文献
5.
The relationship between membrane lipid composition and membrane lipid phase transitions was investigated in Yersinia enterocolitica cells grown at 5, 22 and 37°C. The total phospholipid concentrations were 9.4, 7.3 and 6.3% of the cell dry weight for cells grown at 5, 22 and 37°C, respectively. The relative concentrations of the three major phospholipids, phosphatidylethanolamine (73–76%), phosphatidylglycerol (9–11%) and cardiolipin (11–13%) were essentially the same at all three growth temperatures. The ratios of unsaturated to saturated fatty acids were 2.2, 1.1 and 0.4 for cells grown at 5, 22 and 37°C, respectively. This change in the fatty acid composition in response to temperature changes is similar to the patterns reported for other organisms. Reversible thermotropic phase transitions were detected by calorimetric analysis in both pure lipid preparations and membrane preparations. The mid-points of the thermotropic phase transitions were at ?13, ?9 and 1°C for membranes from cells grown at 5, 22 and 37°C, respectively. The phase transitions of the membranes from cells grown at the three different temperatures occurred below the lowest growth temperature (5°C). The alternations in the fatty acid composition in Y. enterocolitica did not, therefore, appear to be required to adjust membrane fluidity but might rather be required for some other membrane function. 相似文献
6.
Miles EA Banerjee T Calder PC 《Prostaglandins, leukotrienes, and essential fatty acids》2004,70(6):529-538
This study set out to identify whether stearidonic acid (18:4n-3; STA) can be used to increase the eicosapentaenoic acid (20:5n-3; EPA) content of plasma lipids and cells in humans and to understand more about the effects of increased consumption of gamma-linolenic acid (18:3n-3; GLA), STA and EPA in humans. Healthy young males were randomised to consume one of seven oil blends for a period of 12 weeks (9g oil/day) (n = 8-12 subjects/group). Palm oil, sunflower oil, an EPA-rich oil, borage oil (rich in GLA), and Echium oil (rich in STA) were blended in various combinations to generate a placebo oil and oils providing approximately 2g GLA + STA + EPA per day, but in different combinations. Blood was collected at 0, 4, 8 and 12 weeks and the fatty acid compositions of plasma triacylglycerols, cholesteryl esters and phospholipids and of peripheral blood mononuclear cells (PBMCs) determined. Significant effects were observed with each lipid fraction. Neither STA nor its derivative 20:4n-3 appeared in any of the lipid fractions studied when STA (up to 1g/day) was consumed. However, STA (1g/day), in combination with GLA (0.9 g/day), increased the proportion of EPA in some lipid fractions, suggesting that STA-rich plant oils may offer a novel means of increasing EPA status. Furthermore, this combination tended to increase the dihomo-gamma-linolenic acid (20:3n-6; DGLA) content of PBMCs, without an increase in arachidonic acid (AA) (20:4n-6) content. EPA consumption increased the EPA content of all lipid fractions studied. Consumption of GLA (2g/day), in the absence of STA or EPA, increased DGLA content with a tendency to increase AA content in some fractions. This effect was prevented by inclusion of EPA in combination with GLA. Thus, this study indicates that STA may be used as a precursor to increase the EPA content of human lipids and that combinations of GLA, STA and EPA can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects may offer new strategies for manipulation of cell composition in order to influence cellular responses and functions in desirable ways. 相似文献
7.
EL4 cells were cultured with exogenous fatty acids under conditions that resulted in their incorporation into membrane phospholipids. The behavior of the fluorescent lipid probes diphenylhexatriene and perylene was monitored in intact EL4 cells and in isolated EL4 plasma membranes. In whole cells substituted with unsaturated fatty acids, there was always a marked decrease in the value of both probes compared to the value of the probes in unsubstituted cells. In whole cells substituted with saturated fatty acids, on the other hand, values for both probes were unchanged compared to unsubstituted cells. In plasma membrane isolated from EL4 cells, no difference in values for either probe was observed among membranes from unsubstituted, saturated fatty acid substituted or unsaturated fatty acid substituted cells, even when the degree of fatty acid substitution was quite substantial. Most of the fluorescent signal for both probes in whole cells appeared to come from cytoplasmic lipid droplets. The value of techniques such as fluorescent polarization for monitoring physical properties of membranes (such as ‘fluidity’) is discussed. 相似文献
8.
Peter R. Allegrini Guus van Scharrenburg Gerard H. De Haas Joachim Seelig 《生物化学与生物物理学报:生物膜》1983,731(3):448-455
1-Palmitoyllysophosphatidylcholine has been mixed in equimolar amounts with specifically deuterated palmitic acid and the structural properties of the lipid/water phase have been studied by 2H- and 31P-nuclear magnetic resonance. The order profile of the free palmitic acid is very similar to that of the parent compound at temperatures above the gel-to-liquid crystal phase transition. The bending of the chain which is typical for diacyl lipids is not observed for the free palmitic acid. The mixture of lysolipid and palmitic acid exhibits well-defined quadrupole splittings even at temperatures below the gel-to-liquid crystal phase transition. Hence it is possible for the first time to establish an order profile in the gel-state of the lipid bilayer phase. Between carbon atoms 5 to 12 the palmitic acid chain is found to assume the extended all-trans conformation with a very small contribution from gauche defects. Towards the methyl terminal a distinct increase in the gauche probability can be noted. The motion of the phosphocholine headgroup was also studied by 2H- and 31P-NMR using selectively deuterated 1-palmitoyllysophosphatidylcholine. The headgroup has a considerably larger motional freedom in the mixture of lysolipid and palmitic acid than in . In addition, the average headgroup conformations are also different in the two systems. 相似文献
9.
When ethanol is added to the growth medium of Clostridium thermocellum ATCC 27405 and C9, a different membrane composition is observed after the period of growth arrest. Changes in fatty acid composition and some unsaturated, branched hydrocarbons have been monitored by GLC-MS. There is a marked increase in normal and anteiso-branched fatty acids at the expense of isobranched fatty acids and an increase in short and unsaturated fatty acids. Thus, an adaptive response to growth in the presence of ethanol induces a membrane containing fatty acids with lower melting points and produces a more ‘fluid’ membrane. The suggestion is made that these membrane changes may be maladaptive to the performance of C. thermocellum. 相似文献
10.
The correlation between the fluidity of phospholipids and their fatty acid composition was studied by spin label technique and gas-liquid chromatography for three major phospholipid species in Tetrahymena pyriformis during temperature acclimation. The fluidity of 2-aminoethylphosphonolipid increased within the first 10 h of the cold-acclimation when the content of γ-linolenic acid in 2-aminoethylphosphonolipid was highest, and it then decreased up to 24 h. On the other hand, the fluidities of phosphatidylethanolamine and phosphatidylcholine showed a gradual decrease up to 24 h after the temperature shift, although γ-linolenic acid contents were highest at 10 h after the temperature shift. Thus the fluidity changes of these two phospholipids were interpreted as resulting from the altered content of other fatty acids in addition to γ-linolenic acid, since the γ-linolenic acid content was smaller than that of 2-aminoethylphosphonolipid. The results suggest that the content of γ-linolenic acid in 2-aminoethylphosphonolipid plays a role in regulating the thermal adaptation process. 相似文献
11.
Seeds of natural populations of Capsella bursa-pastoris, collected from temperate regions, weighed less and had a higher lipid content than those from colder regions. The long-chain (16:0, 18:0, 18:1, 18:2 and 18:3) and very long-chain (20:0, 20:1, 20:2 and 20:3) fatty acid compositions were, however, quite similar in the lipids of all the seed samples which indicates a rigid genetic, rather than environmental, control of fatty acid biosynthesis. Characteristics of the seeds of the diploid species C. rubella and C. grandiflora were similar to those of the tetraploid C. bursa-pastoris, with the exception of the distinctly lower lipid content in C. grandiflora seeds. 相似文献
12.
Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain no. 5710 总被引:2,自引:0,他引:2
Tetsuo Hamamoto Nobuhisa Takata Toshiaki Kudo Koki Horikoshi 《FEMS microbiology letters》1994,119(1-2):77-81
Abstract The cellular fatty acid composition of the psychrophilic Vibrio sp. strain No. 5710 isolated from a deep-sea sediment sample was analyzed. The presence of docosahexaenoic acid (22:6) was demonstrated as found previously in other deep-sea bacteria, and the relative amount of 22:6 decreased as the growth temperature increased. A temperature shift from 10°C to 0°C resulted in a relative increase of 22:6, and an opposite shift led to a decrease. In addition, hexadecanoic acid (16:0) was found to increase as the growth temperature increased. Therefore, it is suggested that the adaptation of 5710 to the growth temperature was carried out by the changes in the relative amounts of 22:6 and 16:0. When 5710 was grown at low temperature, it increased the relative amount of 22:6 presumably to maintain membrane fluidity at that temperature. In contrast, 5710 grown at high temperature probably maintained the membrane fluidity by increasing the amount of a saturated fatty acid, 16:0. Furthermore, observation of the fatty acid compositions at mid-exponential phase and early stationary phase revealed the proportions of several fatty acids, including a major fatty acid, 9- cis -hexadecenoic acid (16:1c, palmitoleic acid), were affected by the growth phase which may be due to the physiological difference between the growth phases. 相似文献
13.
14.
Three 9-day-old cultivars of Hordeum vulgare L. (Barberousse, Gerbel and Panda) were exposed to low levels of SO2 fumigation (40 ± 5 and 117 ± 20 ppb). After 48 days of treatment the seedlings were harvested for lipid analysis. In comparison to the control (plants exposed to charcoal-filtered air), the total lipid content of fumigated seedlings declined at 40 ppb SO2 and even more so at 117 ppb in all three cultivars. A large reduction in diacylglycerols. polar lipids and free sterols was also observed after fumigations at both SO2 concentrations, whereas the treatments resulted in an increase in triacylglycerols and free fatty acids. The percentage composition of total fatty acids and that of each lipid class were changed by the fumigations. resulting in an increase in the degree of unsaturation. No changes in the percentage composition of sterols occurred in the fumigated leaves. These results suggest that even if SO2 may not directly oxidize unsaturated fatty acids at the low concentrations used here (which do not cause visible injury). it may alter lipid metabolism. This alteration. which was particularly evident in the polar lipids and sterols, could affect the functions associated with membrane stabilization, in which lipids plus sterols play a key part. 相似文献
15.
Tetrahymena pyriformis cells have been grown in media varying in NaCl concentration from 3.7 mM (normal medium) to 0.3 M and varying in CaCl2 from 0.2 mM (normal medium) to 0.1 M. Tetrahymena grown in 0.3 M NaCl showed relatively few alterations in phospholipid composition, with significant changes being found only in the cell surface membranes (pellicle), which increased in phosphatidylethanolamine content from 39% (low Na+) to 48% (high Na+) of the total phospholipids. The small decrease in fatty acid unsaturation and increase in shorter chain fatty acids in pellicle phospholipids were not statistically significant. No significant changes in phospholipid head group composition or fatty acid distribution were observed in high Ca2+-grown cells. Complementary studies of membrane fluidity, as inferred from freeze-fracture electron microscopy analysis, indicated that membranes of high Na+-acclimated cells were similar to those of control cells, when each was measured in its respective medium. However, the outer alveolar membrane of the pellicle and the food vacuolar membrane were considerably less fluid in high-Ca2+ cells. The lower fluidity in vacuolar membranes may have been responsible for alterations in the cells' capacity to form food vacuoles. 相似文献
16.
The monolayer technique has been used to study the transfer of [14C]phosphatidylinositol from the monolayer to phosphatidylcholine vesicles. An equivalent transfer rate was found for egg phosphatidylcholine, dioleoylphosphatidylcholine, dielaidoylphosphatidylcholine and dipalmitoylphosphatidylcholine. A reduced transfer rate was found for a shorter-chain derivative, dimyristoylphosphatidylcholine, and for species with two polyunsaturated fatty acid chains such as dilinoleoylphosphatidylcholine, diheptadecadienoylphosphatidylcholine, dilinolenoylphosphatidylcholine and diether and dialkyl derivatives. No activity was found for 1,3-dipalmitoylphosphatidylcholine. The presence of up to 5 mol% phosphatidylinositol in egg phosphatidylcholine vesicles had no effect on the transfer rate. Introduction of more than 5 mol% phosphatidylinositol or phosphatidic acid into the phosphatidylcholine vesicles gradually decreased the rate of phosphatidylinositol transfer from the monolayer. 20 mol% acidic phospholipid was nearly completely inhibitory. Transfer experiments between separate monolayers of phosphatidylcholine and phosphatidylinositol showed that the protein-bound phosphatidylcholine is readily exchanged for phosphatidylinositol, but the protein-bound phosphatidylinositol exchange for phosphatidylcholine occurs at a 20-times lower rate. The release of phosphatidylinositol is dependent on the lipid composition and the concentration of charged lipid in the acceptor membrane, but also on the ratio between donor and acceptor membranes. The main transfer protein from bovine brain which transfer phosphatidylinositol and phosphatidylcholine transfers also phosphatidylglycerol, but not phosphatidylserine or phosphatidic acid. The absence of significant changes in the surface pressure indicate that the phosphatidylinositol and phosphatidylcholine transfer is not accompanied by net mass transfer. 相似文献
17.
Carlota M. Sumbilla Carol L. Zielke W. Douglas Reed Pinar T. Ozand H. Ronald Zielke 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,675(2):301-304
The contribution of glutamine, glucose, ketone bodies and fatty acids to the oxidative energy metabolism of human diploid fibroblasts was studied. The rate of glutamine oxidation by fibroblasts was 98 nmol/h per mg cell protein compared to 2 nmol/h per mg cell protein or less for glucose, acetoacetate, d-3-hydroxybutyrate, octanoic acid and palmitic acid. Glucose inhibited glutamine oxidation by 85%, while the other substrates had no effect. Therefore, these cells meet their energy requirement almost solely by anaerobic glycolysis and glutamine oxidation. 相似文献
18.
Growth of a choline requiring auxotroph of Neurospora crassa on medium lacking exogenous choline produces large changes in the levels of phosphatidylethanolamine and phosphatidylcholine. Whole cell fatty acid distributions were found to vary widely between different phospholipid species of normally growing, choline-supplemented cultures with phosphatidylcholine showing the highest levels of unsaturation and anionic phospholipids and cardiolipin having the lowest. In these lipids, choline deprivation produced little change in fatty acid profiles of phosphatidylethanolamine, whereas changes in fatty acids of phosphatidylcholine and acidic phospholipids resulted in increased levels of unsaturation at both growth temperatures. Microsomal phospholipids also showed fatty acid variability with sharp decreases in phosphatidylcholine unsaturates and increases in acidic phospholipid unsaturated fatty acids at low growth temperatures. Fluorescence polarization of 1,6-diphenylhexatriene in vesicles formed from total cellular and microsomal lipids showed that choline deprivation produces changes in thermotropic properties in the lipids in deprived cultures at either growth temperature. The effective differences in fluorescence polarization between choline-deprived and supplemented cultures grown at a given temperature were found to be comparable to those produced by temperature acclimation in normally growing cultures over a temperature range of 22 K. 相似文献
19.
Sunan Nakornchai Alastair R. Falconer Derek Fisher Alison H. Goodall Terence Hallinan Jack A. Lucy 《生物化学与生物物理学报:生物膜》1981,643(1):152-160
Cell fusion of embryonic chick myoblasts has been studied in the presence of fat-soluble agents that induce erythrocytes to fuse. Retinol inhibited myoblast fusion but the cells recovered their ability to fuse within 48 h of removal of the retinol from the medium. Myristic acid, oleic acid, glycerol monooleate, linolenic acid and arachidonic acid similarly prevented fusion in myogenic cultures. By contrast, linoleic acid moderately enhanced the fusion of chick skeletal myoblasts. In addition, stearic acid, which does not fuse erythrocytes, inhibited myoblast fusion whereas the saturated, non-fusogenic fatty acid, arachidic acid, was without effect. 相似文献
20.
Eight fatty acids were found in the food, larvae and adults of the velvetbean caterpillar, Anticarsia gemmatalis, with C16:0, C18:0, C18:1, C18:2 and C18:3 accounting for over 90% of the total. Fatty acid composition of the larvae tended to reflect that of their food. The most striking differences were the high percentages of C18:1 and C18:2 and the low percentage of C18:3 in the artificial diet and artificial diet-reared larvae compared to the foliage of three species of legume food plants (soybean, Glycine max; pigeon pea, Cajanus cajan; and hairy indigo, Indigofera hirsuta) and foliage-reared larvae. Lipid content (%dw) declined during metamorphosis from mature larva to adult with diet-reared larvae and adults exhibiting significantly higher lipid contents than foliage-reared insects. Regardless of larval food, newly eclosed adults tended to exhibit a decrease in the % of C18:3, and increases in C16:0 and C18:1 compared to larvae. Larval diet clearly influenced the fatty acid composition of larvae and adults, but only the % of C18:2 did not change between food, larvae and adults. 相似文献