首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of procaine and tetracaine to the dipalmitoyl phosphatidylcholine monolayers at the air/water interface is analyzed in terms of two types of interaction: (1) between the phospholipid molecules and the ligand molecules, and (2) among the ligand molecules themselves.The presence of the phospholipid monolayer increases the surface concentration of the anesthetics. The interaction energy, ωAB, between the phospholipid molecules and the anesthetic molecules at the interface accounts for this excess adsorption. The values were ?2.95 kT for procaine and ?2.99 kT for tetracaine where k is the Boltzmann constant and T = 298 K.The adsorption of the local anesthetics to the interface was cooperative. The interaction energy, ωAA, between the anesthetics molecules on the surface determines the cooperativity. The values were ?0.056 kT for procaine and ?0.397 kT for tetracaine, where T = 298 K. This parameter determines the slope of the curve plotted relating the surface concentration (Γ) and the logarithm of the bulk concentration (log C). When |ωAA/kT| ? 1, the adsorption follows the phase-transition.A parameter KA, which is related to the difference of the free energy of anesthetics between the surface and the bulk molecules, locates the take-off point of the adsorption curve at the log C axis. The values were 2.15 · 103 for procaine and 7.00 · 103 for tetracaine.  相似文献   

2.
The local anesthetics procaine and tetracaine were found to quench the fluorescence of the probes N-octadecyl naphthyl-2-amine 6-sulfonic acid and 12-(9-anthroyl)stearic acid in the presence of erythrocyte membranes. This quenching was shown to be due to the aromatic amine of the procaine and tetracaine molecules. Lidocaine, an active anesthetic that does not contain an aromatic amine in the same position as does procaine and tetracaine did not quench either of the fluorophores. The preferential quenching of the fluorescent probes by procaine and tetracaine indicated a greater accessibility of tetracaine than of procaine to the hydrocarbon region of the membrane and a greater accessibility of procaine than of tetracaine at the membrane's surface. The addition of calcium was found to reverse the quenching of 12-(9-anthroyl)stearic acid by tetracaine in the presence of red cell membranes.  相似文献   

3.
The effects of the local anesthetics tetracaine, procaine (both charged at pH 6), and benzocaine (uncharged) on phospholipid liposomes have been investigated by 500 MHz 1H NMR Spectroscopy. All the drugs reverse the Pr3+ induced shifts of phospholipid resonances in the same sequence as they are shifted by addition of Pr3+: choline POCH2- > choline-CH2N > choline-N(CH3)3 > glycerol > glycerol > acyl C2 > acyl C3. The drug effects result from incorporation of positive charges (tetracaine and procaine) and from the induction of a conformational change of the phospholipid head group via an action on the lipid glycerol backbone (benzocaine). From titration experiments with tetracaine on liposomes containing Pr3+ inside and outside is derived that the drug passes the bilayer by transverse diffusion. Tetracaine partitions outside/inside at a ratio of 21. Changes in linewidths of the drug resonances when incorporated into the liposomes allow the conclusion that the tetracaine molecule is located in an elongated way between the lipid acyl chains with its nitrogen group near the glycerol backbone. Benzocaine, showing strong effects on the line shapes of the protons on C2 and C3 of the lipid acyl chains is also located near the glycerol backbone, the region with the strongest hydrophobic forces.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 30), Cardiology.  相似文献   

4.
The efficacy of five local anesthetics in causing stimulation of phospholipid metabolism in rat pineal gland in vitro paralleled their anesthetic potency and decreased in the order: dibucaine, tetracaine, cocaine, procaine, lidocaine. When stimulation occurred, the patterns of labeling resembled that produced by propranolol, a β-adrenergic receptor blocking agent with local anesthetic activity. Isotope incorporation into phosphatidylglycerol and CDP-diglyceride was markedly enhanced and increases of labeling of phosphatidic acid and phosphatidylinositol were also seen. At concentrations of 1–10 mM, propranolol and local anesthetics inhibited labeling of phosphatidylcholine and phosphatidylethanolamine by more than 90% and incorporation of 32Pi into other phospholipids to a smaller extent.  相似文献   

5.
To provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics, we carried out a study of the membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS) were used to examine the effects of local anesthetics on differential rotational mobility between polar region and hydrocarbon interior of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The two membrane components differed with respect to 2 and 12 anthroyloxy stearate (2-AS, 12-AS) probes, indicating that a difference in the membrane fluidity may be present. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 12-AS in the hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but tetracaine, bupivacaine, lidocaine and prilocaine increased anisotropy of 2-AS in the membrane interface. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but have significant ordering effects on the membrane interface, and thus they could affect the transport of Na+ and K+ in nerve membranes, leading to anesthetic action.  相似文献   

6.
The effects of tertiary amine local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and chlorpromazine were investigated for three enzyme activities associated with rat brain synaptosomal membranes, i.e., (Na+ + K+)-ATPase (ouabain-sensitive), Mg2+-ATPase (ouabain-insensitive) and acetylcholinesterase. Approximately the same concentrations of each agent gave 50% inhibition of both ATPase, for example 7.9 and 10 mM tetracaine for Mg2+-ATPase and (Na+ + K+)-ATPase, respectively; these concentrations are 10-fold higher than required for inhibition of mitochondrial F1-ATPase. The relative inhibitory potency of the several agents was proportional to their octanol/water partition coefficients. Acetylcholinesterase was inhibited by all agents tested, but the ester anesthetics (procaine and tetracaine) were considerably more potent than the others after correction for partition coefficient differences. For tetracaine, 0.18 mM gave 50% inhibition and showed competitive inhibition on a Lineweaver-Burk plot, but for dibucaine a mixed type of inhibition was observed, and 0.63 mM was required for 50% inhibition. Tetracaine evidently binds at the active site, and dibucaine at the peripheral or modulator site, on this enzyme.  相似文献   

7.
Dibucaine, a local anesthetic, is known to induce flagellar excision in Chlamydomonas reinhardtii. Herein, we investigate whether other local anesthetics have similar effects. Tetracaine, bupivacaine, procaine, and lidocaine also caused flagellar excision, although their potencies were lower than that of dibucaine. Bupivacaine, procaine, and lidocaine induced a morphological change in flagella from a rod‐like shape to a disk‐like shape before flagellar excision. Except for lidocaine, these local anesthetics caused cell‐wall shedding in addition to flagellar excision. The anesthetics in order of their median effective concentration (1‐h EC50) for flagellar excision are as follows: dibucaine (1.37 × 10?5 M) < tetracaine (3.16 × 10?5 M) < bupivacaine (4.25 × 10?4 M) < procaine (2.02 × 10?3 M) < lidocaine (3.61 × 10?3 M). In all cases, Ca2+ depletion from the solution inhibited flagellar excision. However, Ca2+‐channel blockers, IP3 receptor antagonists, and inhibitors of phospholipase C did not prevent excision. We suggest that the local anesthetics induce flagellar excision by increasing the fluidity of the flagellar/cell membrane, thereby allowing extracellular Ca2+ to flow into the cell and cause flagellar excision.  相似文献   

8.
E C Kelusky  I C Smith 《Biochemistry》1983,22(25):6011-6017
The interaction of the local anesthetics tetracaine and procaine with multilamellar dispersions of phosphatidylethanolamine has been investigated by using 2H NMR of specifically deuterated anesthetics. Tetracaine was found to partition more strongly than procaine into the lipid. The 2H NMR spectra showed a quadrupole doublet and a narrow line, with the former corresponding to membrane-bound anesthetic and the latter to anesthetic free in solution. The integrated areas of the narrow line and of the doublet correspond to the concentrations of free and bound anesthetic predicted from the Kp values. There is no strong pH dependence for the quadrupole splittings of tetracaine, suggesting a similar depth of penetration into the lipid bilayer over the entire pH range. The data are consistent with a model in which tetracaine acts as a wedge to stabilize the phosphatidylethanolamine bilayer against transition to a hexagonal structure. Procaine is proposed to sit higher in the phosphatidylethanolamine bilayer than does tetracaine. The T1 values were generally shorter in the membrane than in solution, suggesting slower motions, particularly for the aromatic ring of tetracaine.  相似文献   

9.
A new approach is presented which allows to describe the binding of different local anesthetics to lipids. Lipids (dl-α-dipalmitoylphosphatidylcholine, phosphatidylserine, cardiolipin) are spread at the air-water interface and the anesthetic (procaine, butacaine, tetracaine) injected into the aqueous subphase. The equilibrium constants associated to the interfacial reaction: D+ (subphase) + L? (monolayer) ? DL (monolayer) (where D+ denotes the anesthetics, L? the lipid anionic site and DL the complex) are calculated from an experimental evaluation of the surface potential of the lipid monolayer. This mode of determination is based essentially on the good correlation between the experimental values of the surface potential and the theoretical predictions from the Gouy-Chapman theory. Fluorescence measurements on liposomes are carried out in order to locate the position of the drug in the lipid layer. This method can be extended to any positively charged drug-anionic lipid interaction.  相似文献   

10.
Transmembrane currents and changed [Ca2+]in produced by iontophoretic injection of cAMP were investigated in voltage clampedHelix pomatia neurons. The Fura-2 fluorescence probe technique was used to measure [Ca2+]in. Injection of cAMP was found to produce a protracted rise in the latter at a membrane potential range of –40 to –100 mV in conjunction with transmembrane inward current. Duration of the changes in [Ca2+]in largely dependent on neuronal size and varied between 50 and 500 sec (parameters for neurons with somata of around 100 and 40 µm respectively). In a medium with Ca2+ replaced by Mg2+ (as well as after addition of EDTA, a calcium chelator) both transmembrane current and the pattern of increase in [Ca2+]in remained unchanged. Inward current usually declined substantially but degree of change in [Ca2+]in remained the same when Na+ was eliminated from the solution by replacing its Tris+. Addition of 2 mM Cd2+ to the external medium hardly affected current level and increase in [Ca2+]in. Neither procaine, a local anesthetic, nor ryanodine (which inhibits release of calcium from the intracellular store) changed the cAMP effects observed. A concentration of 1 mM La3+ depressed both inward current and the [Ca2+]in increase. Findings would imply the occurrence of cAMP-dependent release of calcium from the intracellular store in the neurons tested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 396–402, May–June, 1989.  相似文献   

11.
The fluorescent dye ethidium bromide binds to the acetylcholine receptor with an apparent Kd of 3 μM and a stoichiometry of 1 molecule of ethidium per α-bungarotoxin site. Time dependent fluorescent increases were observed upon addition of carbamylcholine, the amplitude and half-time of which were dependent on the Carb1 concentration. It appeared that these fluorescence increases resulted from a lowering of the Kd for ethidium as the AcChR-Carb complex underwent an isomerization from low to high affinity form(s) for carb, and more ethidium was bound. Titration with the local anesthetic procaine led to ethidium fluorescence increases at low procaine concentrations, followed by a fluorescence decrease at higher procaine concentrations to that level induced by saturating α-bungarotoxin. Thus it appeared that the ethidium binding site either interacted with or was identical with local anesthetic binding site(s).  相似文献   

12.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

13.
Locations and dynamical perturbations for lipids of local anesthetics (procaine . HCl, tetracaine . HCl, and dibucaine . HCl) in sonicated egg yolk phosphatidylcholine (PC) vesicles have been studied by 1H-1H nuclear Overhauser effect (NOE) measurements. It was found that tetracaine and dibucaine bind much strongly to the neutral lipids than does procaine and that their mobilities are lowered to such an extent that spin diffusion is transmitted (i.e., omega 2 tau c2 much greater than 1). The intermolecular NOEs between drugs and PC were more effective in the case of dibucaine than with tetracaine, indicating that dibucaine binds to the lipids more strongly than tetracaine; this order agrees well with that of anesthetic potency. However, it was only tetracaine that gave any appreciable dynamical perturbation to the PC vesicles when they were monitored by the extent of transfer of the negative NOE from alpha-methylene protons to choline methyls, olefinic methines, acyl methylenes and terminal methyl protons. This finding was interpreted as being due to the differences in the locations of these drugs in small unilamellar vesicles: (1) procaine interacts with lipids very weakly at the outer surface of the vesicles; (2) tetracaine binds to the lipids both at the outer and inner halves of the bilayer, inserting its rod-like molecule in a forest of acyl chains of PC; (3) dibucaine binds tightly to the polar head-group of PC, which resides only at the outer half of the bilayer vesicles. It was concluded that the relative order of anesthetic potency within these drugs can be correlated not with the ability to affect membrane fluidity but with the ability to bind to lipids at the polar head-group of the bilayer vesicles.  相似文献   

14.
Anesthetics bound to model membranes were observed directly by means of deuterium nuclear magnetic resonance (NMR). The specifically deuterated local anesthetics procaine and tetracaine were synthesized, and their partition coefficients (water:phosphatidylcholine) and pKa values determined. The interaction of these anesthetics with lamellar dispersions of egg phosphatidylcholine was studied by 2H nuclear magnetic resonance and by electron spin resonance (ESR) of a spin-labelled phospholipid at low (5.5) and high (9.5) pH. The ESR experiments suggest that tetracaine intercalates in the membrane and that it equilibrates between water and the phospholipid bilayers of the multilamellar system. The NMR results are consistent with a model where the anesthetic is (1) free in water, (2) weakly bound, and (3) strongly bound to the membrane. A fast exchange exists between the two first sites, but exchange is slow with the third site. Binding of type 3 is observed only at high pH for procaine, whereas it is found both at low and high pH for tetracaine. Calculations of the partition coefficients for the charged and uncharged forms of tetracaine indicate that both sites, 2 and 3, are occupied by the charged form at low pH and by the uncharged form at high pH. The partition coefficient for the weakly bound species was estimated from an analysis of the dependence of line width on the lipid to water ratio. The NMR data suggest that the binding sites for the strongly bound charged and uncharged species are different, the former probably being closer to the membrane-water interface. Estimates of molecular order parameters for the strongly bound species indicate that it is located with its long molecular axis approximately parallel to the director for ordering of the fatty acyl chains. A small increase in lipid ordering by tetracaine is observed at low pH, as evidenced by 2H NMR of the deuterated N-methyl groups of phosphatidylcholine; the reverse occurs at high pH.  相似文献   

15.
The interaction of the local anesthetic tetracaine with phosphatidylserine-containing model membranes has been studied by 2H-NMR. Charged tetracaine exhibited an unusually large partition coefficient into multilamellar dispersions of phosphatidylserine. The 2H-NMR spectra consisted of a Pake doublet and a narrow line, with the former corresponding to tetracaine in the bilayer and the latter to tetracaine free in solution. A strong pH dependence of the quadrupole splittings indicated different membrane locations for charged and uncharged tetracaine. In equimolar mixtures of phosphatidylserine and phosphatidylcholine the partition coefficients and 2H-NMR spectra were much more like those observed in neat phosphatidylcholine than in neat phosphatidylserine. Dilution studies at pH 5.5 indicated that in phosphatidylserine/phosphatidylcholine mixtures tetracaine experiences a three-site exchange similar to that found earlier for tetracaine in phosphatidylcholine. Tetracaine is in fast exchange between sites weakly bound to membrane and free in solution, and in slow exchange with a strongly bound site in the membrane.  相似文献   

16.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by 31P and 1H magic-angle spinning (MAS) NMR spectroscopy. The 31P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

17.
Summary The effects of local anesthetics on the topology of aminophospholipids and on the release and uptake of dopamine in rat brain synaptosomes have been examined. A metabolically intact preparation of synaptosomes was prepared which maintains aminophospholipid asymmetry and the capacity for sodium-driven uptake and depolarization-dependent release of dopamine. Incubation of synaptosomes with local anesthetics at 37°C induced perturbations in the topology of aminophospholipids as determined by their reactivities to the covalent probe trinitrobenzenesulfonic acid. The reaction of trinitrobenzenesulfonate with phosphatidylethanolamine and phosphatidylserine was inhibited 10–20% by low concentrations of tetracaine (1–100 m) and enhanced by high concentrations (0.3–1.0mm). Other local anesthetics showed a similar biphasic effect with a potency order of dibucaine>tetracaine>lidocaineprocaine. K+-stimulated, Ca2+-dependent release of [3H]dopamine was inhibited significantly at low concentrations of tetracaine (1–10 m) but enhanced at higher concentrations (0.1–1.0mm). Dibucaine and procaine had a similar biphasic effect on the dopamine release. For each of the local anesthetics tested, the inhibition of the reaction of phosphatidylethanolamine and phosphatidylserine with trinitrobenzenesulfonate occurred at concentrations which were shown also to inhibit the release of [3H]dopamine. Local anesthetics were shown to inhibit uptake of [3H]dopamine with a potency order which reflects their potency in producing anesthesia. The inhibition of dopamine uptake by dibucaine, tetracaine, lidocaine, or procaine was characterized by inhibitory constants (K I ) of 1.8±0.4 m, 27±5 m, 190 m and 0.5mm, respectively.Abbreviations TNBS 2,4,6-trinitrobenzene sulfonate - PE phosphatidylethanolamine - PS phosphatidylserine - ESR electron spin resonance - TLC thin-layer chromatography - DA dopamine  相似文献   

18.
The interaction of Pt(II)(dppf)-complex, namely [Pt(dppf)(H2O)2]2+ with DNA was investigated by DPV and 1H-NMR techniques. The results showed that the interaction process has been characterized by changes in the electrochemical parameters of both compounds and the formation of a new anodic current peak close to the anodic current peak of the [Pt(dppf)(H2O)2]2+. In addition, the 1H-NMR spectra show that the coordination of Pt(II)(dppf)-complex to dsDNA occurs via N(7) of guanine. Others parameters like pH and ionic strength that affect the interaction process were also investigated.  相似文献   

19.
天山林区不同类型群落土壤氮素对冻融过程的动态响应   总被引:1,自引:0,他引:1  
季节性冻融过程对北方温带森林土壤氮素的转化与流失具有重要影响,但不同类型群落对冻融过程响应的差异尚不明确。通过在林地、草地、灌丛上设置系列监测样地,采用原位培养的方法,利用林冠遮挡形成的自然雪被厚度差异,监测分析了冻融期天山林区不同群落表层土壤(0—15 cm)的氮素动态及净氮矿化速率间的差异。结果表明:(1)不同类型群落土壤的铵态氮(NH+4-N)含量、微生物量氮(MBN)含量基本与土壤(5 cm)温度呈正相关,深冻期林地土壤铵态氮含量低于其他群落类型而硝态氮含量高于其他群落类型;(2)硝态氮(NO-3-N)为天山林区季节性冻融期间土壤矿质氮的主体,占比达78.4%。灌丛土壤硝态氮流失风险较大,融化末期较融化初期灌丛土壤硝态氮含量下降了64.6%;(3)冻融时期对整体氮素矿化速率影响显著,群落类型对氨化速率影响显著;(4)天山林区土壤氮素在冻结期主要以氮固持为主。通过揭示不同类型群落土壤氮素对冻融格局的响应,能够助益于对北方林区冬季土壤氮素循环的认识。  相似文献   

20.
The purpose of this study was to investigate the effect of combined Ca2+ cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca2+ cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product.KEY WORDS: alginate, Ca2+ cross-linking, freeze-thawing, swelling, wound dressing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号