首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-1 (human immunodeficiency virus type 1) uses its trimeric gp160 envelope (Env) protein consisting of non-covalently associated gp120 and gp41 subunits to mediate entry into human T lymphocytes. A facile virus fusion mechanism compensates for the sparse Env copy number observed on viral particles and includes a 22-amino-acid, lentivirus-specific adaptation at the gp41 base (amino acid residues 662–683), termed the membrane proximal external region (MPER). We show by NMR and EPR that the MPER consists of a structurally conserved pair of viral lipid-immersed helices separated by a hinge with tandem joints that can be locked by capping residues between helices. This design fosters efficient HIV-1 fusion via interconverting structures while, at the same time, affording immune escape. Disruption of both joints by double alanine mutations at Env positions 671 and 674 (AA) results in attenuation of Env-mediated cell–cell fusion and hemifusion, as well as viral infectivity mediated by both CD4-dependent and CD4-independent viruses. The potential mechanism of disruption was revealed by structural analysis of MPER conformational changes induced by AA mutation. A deeper acyl chain-buried MPER middle section and the elimination of cross-hinge rigid-body motion almost certainly impede requisite structural rearrangements during the fusion process, explaining the absence of MPER AA variants among all known naturally occurring HIV-1 viral sequences. Furthermore, those broadly neutralization antibodies directed against the HIV-1 MPER exploit the tandem joint architecture involving helix capping, thereby disrupting hinge function.  相似文献   

2.
The mRNA-capping process starts with the conversion of a 5′-triphosphate end into a 5′-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5′-5′ phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2′OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2′O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, N7MeGpppG, and N7MeGpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2′O-methyltransferase activities.  相似文献   

3.
Multiple molecular dynamics simulations with explicit solvent at room temperature and at 400 K were carried out to characterize designed ankyrin repeat (AR) proteins with full-consensus repeats. Using proteins with one to five repeats, the stability of the native structure was found to increase with the number of repeats. The C-terminal capping repeat, originating from the natural guanine-adenine-binding protein, was observed to denature first in almost all high-temperature simulations. Notably, a stable intermediate is found in experimental equilibrium unfolding studies of one of the simulated consensus proteins. On the basis of simulation results, this intermediate is interpreted to represent a conformation with a denatured C-terminal repeat. To validate this interpretation, constructs without C-terminal capping repeat were prepared and did not show this intermediate in equilibrium unfolding experiments. Conversely, the capping repeats were found to be essential for efficient folding in the cell and for avoiding aggregation, presumably because of their highly charged surface. To design a capping repeat conferring similar solubility properties yet even higher stability, eight point mutations adapting the C-cap to the consensus AR and adding a three-residue extension at the C-terminus were predicted in silico and validated experimentally. The in vitro full-consensus proteins were also compared with a previously published designed AR protein, E3_5, whose internal repeats show 80% identity in primary sequence. A detailed analysis of the simulations suggests that networks of salt bridges between β-hairpins, as well as additional interrepeat hydrogen bonds, contribute to the extraordinary stability of the full consensus.  相似文献   

4.
While thiols had been shown to either delay capping of lymphocyte membrane components or to leave it unaffected, sulfydryl reagents can block the process. However, capping is not completely blocked by doses of SH reagents below 10?3M and thus, appears to be particularly resistant to SH poisoning. The extent of inhibition is concentration dependent, and in the lower dose range, some facilitation of capping can even be obtained. The effects of the drugs on the capping process actually depend on their reaction with SH radicals as shown by competition with free thiols. Some of the SH reagents used here are known inhibitors of lymphocyte triggering. There is no direct correlation, however, namely, there is in general rather little inhibition of capping at doses of SH reagents sufficient to completely abolish triggering.  相似文献   

5.
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation.  相似文献   

6.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

7.
8.
The guanylyltransferase activity of mRNA capping enzyme catalyzes the transfer of GMP from GTP to the 5′ terminus of mRNA. In Saccharomyces cerevisiae, the activity is carried on the α subunit of capping enzyme, the product of the CEG1 gene. We have isolated 10 recessive, temperature-sensitive mutations of CEG1; nine (cegl-1 to cegl-9) were isolated on a single-copy plasmid and the remaining one (cegl-10) on a multicopy plasmid. The presence of cegl-10 in multiple copies is essential for the viability of cells carrying the mutation, and a shift to the restrictive temperature resulted in rapid growth arrest of cegl-10 cells, while growth rates of other mutants decreased gradually upon temperature upshift. Intragenic complementation was not observed for pairwise combinations of the mutations. Although the majority of the mutations occurred at the amino acid residues conserved between Cegl and the Schizosaccharomyces pombe homologue, none were located in the regions that are also conserved among viral capping enzymes and polynucleotide ligases. Guanylyltransferase activity of the mutant proteins as measured by covalent Ceg1-GMP complex formation was heat-labile. The availability of these mutants should facilitate studies of the structure-function relationships of capping enzyme, as well as the roles and regulation of mRNA capping.  相似文献   

9.
Surface markers, Con A-induced capping, blastogenic transformation stimulated by PHA and allogeneic mononuclear cells, and natural killer activity of Ficoll — Hypaque-separated lymphocytes were studied before and after varying periods of cryopreservation. An increase was observed in the relative number of E rosetteforming cells and in the incorporation of [3H]thymidine into DNA, by the unstimulated cryopreserved cells after thawing. On the other hand, a substantial drop occurred in the Con A-induced capping and the natural killer activity of cryopreserved cells. The possible causes for the variation in the effects of cryopreservation on lymphocyte functions as reported by different investigators were discussed. It was concluded that until universally accepted, standardized procedures for the assessment of lymphocyte functions in vitro become available, each laboratory should establish the changes induced by cryopreservation in lymphocyte function with the methods employed locally to allow the observations made on cryopreserved lymphocytes to be meaningful.  相似文献   

10.
11.
Unequivocal evidence of the viral nature of virus-like particles observed at the specific site of retention of tobacco rattle virus (TRV) in Paratrichodorus and Trichodorus nematodes has not previously been available. A new staining technique using safranin-O, which does not affect viral antigenicity, was used with an antiserum raised against the coat protein of TRV and prepared for use with immunogold labelling. Application of this method enabled the occurrence and localization of particles of TRV to be confirmed in the pharynx of the natural vector of the virus, Paratrichodorus anemones, and provided unequivocal evidence that the particles observed were TRV particles. The TRV particles were observed attached only to the cuticle lining the posterior tract of the pharyngeal lumen of the vector. Therefore, the specific site of retention of TRV particles in P. anemones is apparently more localized than reported to occur in other vector trichodorid species.  相似文献   

12.
We investigated whether capsianosides, diterpene glycosides, extracted from Capsicum plants could affect human immunodeficiency virus type 1 (HIV-1) infection. Significant effect on virus infection in MAGI/CCR5 cells was neither observed for the X4 virus by capsianosides II, XI, and A, nor for an R5 virus by capsianoside G. Apparent enhancement of X4 HIV-1 infection by capsianoside G was observed and exclusively related to the usage of the CXCR4 coreceptor. The capsianoside G-treated cells had no change in the expression level of CD4, CXCR4, and CCR5, however, colocalization and capping of CD4 and CXCR4, but not of CD4 and CCR5 was observed. Our results suggested that capsianoside G enhanced X4 virus infection at the level of viral penetration through the capping and colocalization of receptors needed for infection.  相似文献   

13.
The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs—P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.  相似文献   

14.
15.
Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand–receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.  相似文献   

16.
In two of three trials, detectable color reactions in ELISA for Prunus necrotic ringspot virus (PNRSV) were observed for Criconemella xenoplax handpicked from the root zone of infected peach trees. Criconemella xenoplax (500/pot) handpicked from root zones of peach trees infected with PNRSV failed to transmit the virus to cucumber or peach seedlings. The nematode also failed to transmit tomato ringspot (TomRSV) or tobacco ringspot viruses between cucumbers, although Xiphinema americanum transmitted TomRSV under the same conditions. Plants of peach, cucumber, Chenopodium quinoa, and Catharanthus roseus were not infected by PNRSV when grown in soil containing C. xenoplax collected from root zones of PNRSV-infected trees. Shirofugen cherry scions budded on Mazzard cherry seedling rootstocks remained symptomless when transplanted into root zones of PNRSV-infected trees. Virus transmission was not detected by ELISA when C. xenoplax individuals were observed to feed on cucumber root explants that were infected with PNRSV and subsequently fed on roots of Prunus besseyi in agar cultures. Even if virus transmission by C. xenoplax occurs via contamination rather than by a specific mechanism, it must be rare.  相似文献   

17.
Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5′-triphosphatase that hydrolyzes the γ phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 μM ATP; Vmax = 30 s−1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases.  相似文献   

18.
Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.  相似文献   

19.
1. In order to better understand ligand-induced redistribution of membrane receptors and lymphocyte activation in ectothermic vertebrates, flow cytometry was used to monitor the effects of both in vivo acclimation temperature and in vitro assay temperatures on the kinetics of monoclonal antibody-induced membrane immunoglobulin (mIg) capping on channel catfish lymphocytes. 2. It was observed that the kinetics of mIg capping were dependent on in vitro assay temperatures, in vivo acclimation temperatures, and the length of time of in vivo acclimation. In the latter situation in vivo acclimation of fish to 27, 22 and 17 degrees C was considered complete after 3 weeks, while acclimation to 12 degrees C required a minimum of 5 weeks. 3. The energies of activation required for mIg capping ranged from 33 to 24 kcal/mol; lower energies of activation were observed with lower temperature acclimation. 4. It was also noted that the lower energies of activation were associated with concomitant decreases in cellular phospholipid saturated/unsaturated fatty acid ratios. 5. It appears that channel catfish B cell mIg capping, presumably a requisite for immune function, can be significantly affected by environmental temperatures; most likely such effects are attributable to changes in plasma membrane viscosities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号