首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
l-Carnitine uptake and exodus was studied in rat extensor digitorum longus muscle in vitro. A saturable transport process was observed, which had an apparent Km of 60 μM and V of 22 nmol/h per g tissue. Transport was inhibited by 2,4-dinitrophenol, sodium azide, anaerobiosis, ouabain, and sodium ion depletion. Analogs of l-carnitine containing a quarternary ammonium group were found to inhibit uptake (d-carnitine, Ki = 400 μM γ-butyrobetaine, Ki = 60 μ M, choline chloride, Ki = 14 mM), while those not containing this functional group (γ-aminobutyrate, d,l-β-hydroxybutyrate) had no significant effect at concentrations 100 times the apparent Km of l-carnitine. Carnitine exodus from rat extensor digitorum longus muscle consisted of two phases. The rapid initial phase was attributed to leakage of l-carnitine from damaged muscle fibers, as it proceeded at nearly the same rate at 0° and 37°C, and leveled off to a rate of near zero after 1 h of incubation in vitro. The quantitatively more important phase of exodus showed a latency of 1–2 h and then proceeded at a linear rate of 40–45 nmol/h per g tissue. The results of this study support the contention that l-carnitine is taken up by a carrier-mediated, active transport system in rat extensor digitorum longus muscle. Functionally, the transport system for uptake is distinct from the process by which carnitine is lost from this muscle.  相似文献   

2.
The role of microfilaments and microtubules on bile salt transport was studied by investigating the influence of a microfilament and a microtubule inhibitor, cytochalasin B and colchicine, respectively, on taurocholate uptake by isolated hepatocytes in vitro. Hepatocytes were prepared by the enzyme perfusion method and [14C]taurocholate uptake velocity was determined by a filtration assay. Taurocholate uptake obeyed Michaelis-Menten kinetics, maximal uptake velocity and apparent half-saturation constants averaging 0.87 ± SD 0.05 nmol · s?1 · 10?6cells and 10.9 ± 1.8 μM, respectively. Cytochalasin B (4.2–420 μM) inhibited taurocholate uptake in a competitive fashion; Ki being 33 ± 7 μM. At concentrations above 100 μM the compound decreased 36Cl membrane potential and intracellular K+ concentration. Other parameters of cell viability were not affected by cytochalasin B. Colchicine (0.1–1.0 mM), by contrast, inhibited taurocholate uptake non-competitively, Ki being 0.47 ± 0.07 mM. The inhibition brought about by colchicine was considerably smaller than that induced by cytochalasin B. None of the parameters of cell viability tested was affected by colchicine. These results suggest that microfilaments may be involved in the carrier-mediated hepatocellular transport of bile salts. This could, at least in part, account for cytochalasin B-induced cholestasis. The contribution of the microtubular system, if any, is less important quantitatively. The mechanisms whereby these two components of the cytoskeleton partake in bile salt transport remain to be elucidated.  相似文献   

3.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

4.
The uptake of [32P]phosphate into human red blood cells was inhibited (Ki = 0.6 mM) by the sulfhydryl reagent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). 2-Nitro-5-thiobenzoic acid (NTB), the reduced form of DTNB, was a less potent inhibitor (Ki = 7 mM). The inhibition of anion transport by DTNB could be reversed by washing DTNB-treated cells with isotonic buffer, or by incubating DTNB-treated cells with 2-mercaptoethanol, which converted DTNB to NTB. DTNB competitively inhibited the binding of 4-[14C]-benzamido-4′-aminostilbene-2,2′-disulfonate, a potent inhibitor of anion transport (Ki = 1?2 μM), to band 3 protein in cells and ghost membranes. These results suggest that the stilbene-disulfonate binding site in band 3 protein can readily accommodate the organic anion DTNB, and that inhibition by DTNB was not due to reaction with an essential sulfhydryl group.  相似文献   

5.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

6.
A newly synthesized photoreactive thiamine derivative, 4-azido-2-nitrobenzoylthiamine was found to be a competitive inhibitor of the thiamine transport system in Saccharomyces cerevisiae, exhibiting an apparent Ki of 36 nM. When exposed to visible light, 4-azido-2-nitrobenzoylthiamine irreversibly inactivated the thiamine transport. 4-azido-2-nitrobenzoylthiamine-dependent photoinactivation of thiamine transport was partially protected by thiamine, but not by the nitrene-trapping reagent p-aminobenzoate. On the other hand, the irradiation of the yeast cells in the presence of 4-azido-2-nitrobenzoylthiamine did not significantly lead to inactivation of the biotin transport system. The results suggest that 4-azido-2-nitrobenzoylthiamine is a specific irreversible inhibitor of the thiamine transport system in Saccharomyces cerevisiae.  相似文献   

7.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

8.
Phosphate transporter of bovine heart mitochondria was purified by solubilization of submitochondrial particles with octylglucoside and fractionation of the extract with ammonium sulfate. After reconstitution into liposomes the purified protein catalyzed phosphate transport which was sensitive to mersalyl and other SH reagents. Transport measured either as PiOH or PiPi exchange was proportional to protein concentration and time. The PiOH but not the PiPi exchange was stimulated several fold by valinomycin plus nigericin in the presence of K+. The reconstituted system provides a suitable assay during purification of the mitochondrial phosphate transporter.  相似文献   

9.
Glucose transport in human erythrocytes is characterized by a marked asymmetry in the V and Km values for entry and for exit. In addition, they show a high Km and a high V for equilibrium exchange but low Km values for infinite cis and for infinite trans exit and entry. An allosteric pore model has been proposed to account for these characteristics. In this model, substrate-induced conformational changes destabilize the interfaces between protein subunits (the pore gates).Pores doubly occupied from inside destabilize the transport gates and result in high Km and high V transport parameters. This effect is less marked when pores are doubly occupied from outside and therefore transport asymmetry results.  相似文献   

10.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3 · 10?7M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10?8 and 10?7 M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

11.
The kinetic mechanism of chlorpromazine inhibition of erythrocyte hexose transport was investigated using the non-metabolizable glucose analog 3-O-methylglucose. It was found that chlorpromazine added to the external medium is a non-competitive inhibitor of both equilibrium exchange and net 3-O-methylglucose transport at pH 7.8, 15°C. The Ki for equilibrium exchange is 76 ± 21 μM. When net efflux and equilibrium exchange were measured on the same population of cells the equilibrium exchange was 2.5-times the maximum net efflux. The percent reduction of 3-O-methylglucose flux by chlorpromazine is dependent upon chlorpromazine concentration and not 3-O-methylglucose concentration as expected for a non-competitive inhibitor. Equilibrium exchange and net efflux show the same extent of inhibition at each concentration of chlorpromazine evaluated. These results suggest that exchange and net efflux of 3-O-methylglucose in the human erythrocyte may share a common transport system.  相似文献   

12.
Infinite cis uptake of cyclic AMP into red blood cell ghosts has been measured. The Kicoi is calculated from two different integrated rate equations that are applicable when the substrate concentration is unsufficient to cause volume changes. Values of 0.69 mM and 0.66 mM are obtained for the infinite cisKm at 30°C using these procedures. These values are only slightly higher than that predicted from zero trans net flux experiments.Lowering the temperature reduces Kicoi from 0.69 mM at 30°C to 0.478 mM at 20°C, 0.108 mM at 10°C and 0.072 mM at 4°C (Q10 = 2.4). The Q10 for activation of influx permeability of 10?5 M cyclic AMP is 1.55.  相似文献   

13.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

14.
We determine the kinetic parameters V and KT of lactose transport in Escherichia coli cells as a function of the electrical potential difference (Δψ) at pH 7.3 and ΔpH = 0. We report that transport occurs simultaneously via two components: a component which exhibits a high KT (larger than 10 mM) and whose contribution is independent of Δψ, a component which exhibits a low KT independent of Δψ (0.5 mM) but whose V increases drastically with increasing Δψ. We associate these components of lactose transport with facilitated diffusion and active transport, respectively. We analyze the dependence upon Δψ of KT and V of the active transport component in terms of a mathematical kinetic model developed by Geck and Heinz (Geck, P. and Heinz, E. (1976) Biochim. Biophys. Acta 443, 49–63). We show that within the framework of this model, the analysis of our data indicates that active transport of lactose takes place with a H+/lactose stoichiometry greater than 1, and that the lac carrier in the absence of bound solutes (lactose and proton(s)) is electrically neutral. On the other hand, our data relative to facilitated diffusion tend to indicate that lactose transport via this mechanism is accompanied by a H+/lactose stoichiometry smaller than that of active transport. We discuss various implications which result from the existence of H+/lactose stoichiometry different for active transport and facilitated diffusion.  相似文献   

15.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

16.
Adenosine triphosphate-dependent glutathione transport was characterized using inside-out vesicles made from human erythrocytes. Kinetic analysis of the glutathione disulfide (GSSG) transport showed a biphasic Line-weaver-Burk plot as a function of GSSG concentration suggesting the operation of two different processes. One phase had a high affinity for GSSG and a low transport velocity. Most active at acidic pH and at 25°C, this transport activity was easily lost during the storage of vesicles at 4°C. The Km for Mg-ATP was 0.63 mM; guanosine triphosphate (GTP) substituted for ATP gave a 340% stimulation of transport activity. Neither dithiothreitol nor thiol reagents affected this transport process. The other phase had a low affinity for GSSG and a high transport velocity. Most active at pH 7.2 and 37°C, this transport activity was stable during storage of vesicles at 4°C for several days. The Km for Mg-ATP was 1.25 mM; GTP substituted with no change in activity. Dithiothreitol increased the V but did not alter the Km, and thiol reagents inhibited the transport. These findings suggest that there are two independent transfer processes for GSSG in human erythrocytes.  相似文献   

17.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 μM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 μM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Rubidium has no effect on the stimulation of phosphate uptake by sodium.Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake.The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

18.
Log-phase cells of Neurospora crassa, grown in standard minimal medium, possess an energy-dependent transport system for inorganic phosphate, with a K12 (at pH 5.8) of 0.123 mM and a Jmax of 1.64 mmoles/l cell water per min. Like the PO43? transport system in yeast, the Neurospora system is stimulated by high intracellular K+. In addition, it is inhibited by high extracellular salt concentrations, an effect which may be related to the known depolarization of the Neurospora plasma membrane at high salt concentrations.The most striking property of the system is its strong dependence upon the extracellular pH. From pH 4.0 to pH 7.3, the Jmax remains essentially constant but the K12 increases nearly 400-fold, from 0.01 to 3.62 mM. The increase cannot be accounted for by a single system with a preference for H2PO4? (which would show only a 3-fold increase in apparent K12 over this pH range) nor by two systems with different affinities and pH optima (which would display nonlinear double-reciprocal plots at intermediate pH values). It can be explained, however, by a model in which OH? or H+ is assumed to act as a modifier of the transport system, altering its affinity for substrate.  相似文献   

19.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号