首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

2.
The intact, amphipatic form of cytochrome b5 could bind to unsealed ghosts, but not to resealed ghosts, suggesting that the cytochrome could bind only to the inner (cytoplasmic) surface of the ghost membrane. This was further confirmed by the finding that the cytochrome could bind to closed, inside-out vesicles prepared from the ghosts. This asymmetric binding was not due to the exclusive localization of sialic acid and sugar chains on the outer surface of the ghosts membrane, because the cytochrome could not bind to ghosts even after enzymatic removal of these components. Although liposomes consisting of phosphatidylcholine or both phosphatidylcholine and sphingomyelin could effectively bind the cytochrome, this binding capacity was progressively decreased as increasing amount of cholesterol was included in the composition of phosphatidylcholine liposomes. Removal of cholesterol from resealed ghosts by incubation with egg phosphatidylcholine liposomes resulted in the binding of cytochrome b5 to the outer surface of the treated ghosts. The possibility is discussed that the asymmetric binding is due to preferential localization of cholesterol in the outer leaflet of the lipid bilayer that constitutes the ghost membrane.  相似文献   

3.
The energetics of interactions of cholesterol with phospholipid in simple liposome bilayers were compared with those in the bilayer of the human erythrocyte membrane, by measuring cholesterol distribution between erythrocytes and liposomes prepared from their whole phospholipid extract. With liposomes of a range of initial cholesterol contents, the equilibrium value for r, the ratio of cholesterol/phospholipid in the liposomes to that in the cells, is in the range 1.1–1.2. The closeness of this value to 1.0 indicates that overall cholesterol-phospholipid interaction in the cell membrane is similar to that in liposomes. However, while the deviation from 1.0 is small, and could arise from average cholesterol-phospholipid interactions in the membrane being only 0.06 to 0.1 kcal · mol?1 weaker than in liposomes, it could also result from 10 to 20% of the cell membrane phospholipid being unavailable to mix with cholesterol.  相似文献   

4.
5.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

6.
Incorporation of 8 mol percent lactosylceramide into small unilamellar vesicles consisting of cholesterol and sphingomyelin in an equimolar ratio and containing [3H]inulin as a marker resulted in an increase in total liver uptake and a drastic change in intrahepatic distribution of the liposomes after intravenous injection into rats. The control vesicles without glycolipid accumulated predominantly in the hepatocytes, but incorporation of the glycolipid resulted in a larger stimulation of Kupffer-cell uptake (3.2-fold) than of hepatocyte uptake (1.2-fold). Liposome preparations both with and without lactosylceramide in which part of the sphingomyelin was replaced by phosphatidylserine, resulting in a net negative charge of the vesicles, were cleared much more rapidly from the blood and taken up by the liver to higher extents. The negative charge had, however, no influence on the intrahepatic distributions. The fast hepatic uptake of the negatively charged liposomes allowed competition experiments with substrates for the galactose receptors on liver cells. Inhibition of blood clearance and liver uptake of lactosylceramide-containing liposomes by N-acetyl-d-galactosamine indicated the involvement of specific recognition sites for the liposomal galactose residues. This inhibitory effect of N-acetyl-d-galactosamine was shown to be mainly the result of a decreased liposome uptake by the Kupffer cells, compatible with the reported presence of a galactose specific receptor on this cell type (Kolb-Bachofen et al. (1982) Cell 29, 859–866). The difference between the results on sphingomyelin-based liposomes as described in this paper and those on phosphatidylcholine-based liposomes as published previously (Spanjer and Scherphof (1983) Biochim. Biophys. Acta 734, 40–47) are discussed.  相似文献   

7.
The properties of mixtures of phosphatidylcholine and analogues of cholesterol bearing side chains of varying lengths were examined by a variety of methods. The incorporation of the analogues into sonicated liposomes and their effect on the rate of osmotic shrinking of multilamellar liposomes were determined. The ordering of a steroid spin label was studied in an oriented multibilayer system and the effect of the analogues on the phase transition of dipalmitoyl phosphatidylcholine monitored using the spin label TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl). Mixtures of analogues and phospholipid were also studied in monolayers.In all the bilayer systems studied cholesterol caused the greatest ‘rigidifying’ effect, the analogues with shorter or longer side chains being less effective. However, in the monolayer experiments the length of the sterol molecule was found to be much less critical. It is suggested that cholesterol is anchored in position in a phospholipid bilayer by virtue of the molecule being the precise length required to maximise interactions between neighbouring molecules without disturbing the bilayer structure.  相似文献   

8.
A new method for immobilizing protein on the surface of liposomes is described. Inclusion of N-(p-aminophenyl)stearylamide in the lipid composition of vesicles resulted In liposomes that could be ‘activated’ by diazotization with NaNO2/HCl, and subsequently coupled with protein. Using this method 39.7 ? 7.5 μg egg albumin / μmol phospholipid has been coupled to multilamellar vesicles composed of phosphatidylcholine, cholesterol, and N-(p-aminophenyl)stearylamide in a molar ratio of 15:7.5:1.1. Furthermore, when the immunologic response of mice to egg albumin that was encapsulated in, nonspecifically adsorbed, or covalently linked to liposomes was investigated, only the covalent protein-liposome conjugates elicited pronounced and sustained elevations in antibody titers. These results suggest that the immunoadjuvant effects of liposomes can be maximized by covalently linking protein antigens to their surface.  相似文献   

9.
The cholinergic proteolipid from Torpedo electroplax was used in reconstitution experiments in artificial membranes being incorporated directly into the membrane-forming solution or into liposomes (proteoliposomes) which interacted with lecithin bilayers. In both cases the membrane became reactive to acetylcholine by a decrease in resistance and an increase in the frequency and amplitude of minute current fluctuations of 3·10?11 to 4·10?10mho. The injection of d-tubocurarine produ ced an increase in membrane resistance and a decrease in the amplitude of the current fluctuations. These results suggest that the cholinergic proteolipid is reconstituted in an active form in the bilayer.  相似文献   

10.
Microviscosity (\?gh) in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, and in liposomes prepared from their lipid extracts, was determined with the aid of the fluorescence polarization properties of 1,6-diphenyl 1,3,5-hextriene embedded in it. The \?gh values, both in intact cells and in the liposomes, are distinctively greater for normal lymphocytes than for the lymphoma cells, whereas the fusion activation energy in both types of cells and liposomes is 8 ± 0.5 kcal/mol. Determination of cholesterol revealed that its relative amount in a lymphoma cell is about half of that of a normal lymphocyte, a difference that may account for the above difference in fluidity. This thesis is supported by the observed changes in \?gh, which follow artificial changes in cholesterol contents in the surface membrane of both cell types. Introduction of exogeneous cholesterol into the cell surface membranes was performed with lecithin-cholesterol (1:1) liposomes, and in lymphoma cells resulted in an increase of \?gh to a level of normal lymphocytes. Extraction of native cholesterol from the cell surface membranes was carried out with lecithin liposomes, and in normal lymphocytes results in a decrease of \?gh to a value similar to that of lymphoma cells. The induced changes in cholesterol contents are practically reversible for both cell types. By virtue of controlling the microviscosity of lipid layers, the level of cholesterol in cell surface membranes may play an important role in determining biological activities of normal and malignant cells.  相似文献   

11.
The influence of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and several other pesticides on the physical state of membrane phospholipids was investigated using model lipids. The thermal dependence of fluorescence intensity of the probe parinaric acid in dipalmitoylphosphatidylcholine liposomes and lipid vesicles of mixed composition were recorded. DDT was incorporated into the liposomal bilayer. The insecticide lowered the phase transition temperature and broadened the temperature range of the transition. The effects were concentration-dependent.The results may be interpreted as a sort of blurred and facilitated phase transition of bilayer lipids caused by intercalation of DDT between fatty acyl chains of membrane phospholipids.  相似文献   

12.
Prevous studies have revealed that the replacement of the C-2 ester group in phosphatidylcholine by the carbamyloxy function renders the resulting lipids, without affecting the properties of the liposomes, resistant to hydrolysis by phospholipase A2 (Gupta, C.M. and Bali, A. (1981) Biochim. Biophys. Acta 663, 506–515). As an extension of this work, the effect of serum on the stability of liposomes, prepared from 1-palmitoyl-2-heptadec-10-cis- enylcarbamyloxyphosphatidylcholine (carbamylphosphatidylcholine), has been examined. The stability has been measured in terms of (a) bilayer permeability to solutes, and (b) the lipid transfer to serum proteins, Replacement of egg phosphatidylcholine in liposomes by the carbamyl analog prevented serum-induced leakage of the entrapped solutes and also inhibited the lipid (phospholipid and cholesterol) transfer. Manipulation of the cholesterol content of the liposomes had no effect on the stability. These observations indicate that the interaction of serum proteins with liposomes probably involves a highly specific binding of the proteins to the liposome surface.  相似文献   

13.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

14.
The binding of insulin to the external surface of phosphatidylcholine liposomes as a function of the temperature, the surface curvature, and the composition of lipids was studied. The amount of the saturated binding of insulin to liposomes was assessed by gel-filtration chromatography. The binding of insulin to small unilamellar vesicles was highly dependent upon the temperature, favoring low temperatures. As the temperature increased, there was a distinct temperature range where the binding of insulin to small unilamellar vesicles decreased. The temperature ranges for dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) small unilamellar vesicles were found to be 10–20°C and 21–37°C, respectively. These temperature ranges were quite different from the reported ranges of the gel → liquid crystalline phase transition temperatures (Tc) for DMPC or DPPC small unilamellar vesicles. In contrast to other proteins, the amount of insulin bound to DMPC and DPPC small unilamellar vesicles was negligible at or above the upper limit of the above temperature ranges, and increased steadily to 6–7 μmol of insulin per mmol of phospholipid as the temperature decreased to or below the lower limit of these temperature ranges. On the other hand, the binding of insulin to the large multilamellar liposomes cannot be detected at all temperatures tested. The affinity of insulin to neutral phosphatidylcholine small unilamellar vesicles appeared to be related to the surface curvature of the liposomes, favoring the liposomes with a high surface curvature. Furthermore, the amount of insulin bound to small unilamellar vesicles decreased as the content of the cholesterol increased. The presence of 10% molar fraction of phosphatidic acid did not appear to affect the binding of insulin to small unilamellar vesicles. However, the presence of 5% molar fraction of stearylamine in DPPC small unilamellar vesicles increased the amount of bound insulin as well as the extent of aggregation of liposomes. The results of the present study suggest that the interstitial regions of the acyl chains of phospholipids between the faceted planes of small unilamellar vesicles below Tc may be responsible for the hydrophobic interaction of insulin and small unilamellar vesicles. The tight binding of insulin to certain small unilamellar liposomes could lead to an overestimation of the true amount of insulin encapsulated in liposomes, if care is not taken to eliminate the bound insulin during the procedure of encapsulating insulin in liposomes.  相似文献   

15.
Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22°C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.  相似文献   

16.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

17.
Velocity sedimentation on sucrose gradients containing Torpedo physiological saline has been utilized to fractionate Torpedo (Torpedo californica and T. nobiliana) post-synaptic membranes isolated initially on the basis of their density by equilibrium centrifugation. Membranes are separated into two populations: (1) those retained within the gradient (referred to as gradient pool); and (2) membranes sedimenting rapidly through the gradient (referred to as f 22, fraction 22 of the gradient). Comparison of their polypeptide compositions by sodium dodecyl sulfate/polyacrylamide gel electrophoresis indicates that the gradient pool consists of highly purified nicotinic post-synaptic membranes containing the peptides of the acetylcholine receptor and a peptide of Mr 43 000, while f 22 contains the contaminating membranes present in the initial suspension as well as a small fraction of the nicotinic post-synaptic membranes. On the basis of the kinetics of efflux of 22Na+ from the membrane fractions, it is concluded that the gradient pool contains most of the sealed vesicles with functional nicotinic receptors. The internal volume (μl/mg protein) of those membranes exceeds that of f 22 by a factor of 4, and greater than 85% of that internal volume is equilibrated by the nicotinic agonist carbamylcholine, while for f 22 only 40% is equilibrated. Thin-section electron microscopy has been used to estimate the distribution of vesicle sizes. The observed distribution for the gradient pool indicates that these vesicles are a size homogeneous population of diameter 0.3 μm, while f 22 contains a number of smaller and larger vesicles. Torpedo post-synaptic membranes have been treated with alkali to remove the non-receptor peptide of Mr 43 000. After alkaline extraction, velocity sedimentation permits the isolation of a population of size-homogeneous and well-sealed vesicles containing only the peptides of the nicotinic receptor. It is concluded that upon homogenization, the innervated surface of the Torpedo electroplax tends to form vesicles of uniform size (0.3 μm) which can be readily isolated by velocity sedimentation and that the peptide of Mr 43 000 is not required for the maintenance of bilayer structure.  相似文献   

18.
Improved X-ray diffraction data from dry nerve myelin are presented. In addition to the spacings of approx. 150 Å, 60 Å, 44 Å and 34.6 Å, which have been previously reported, we identify a 14 Å series. The data suggests that the hydrocarbon chains in the single bilayer (≈ 60 A?) is ordered, whereas in the double bilayer (≈ 150 A?) and in the fluid phase (≈ 44 A?) it is disordered. It is shown that cholesterol (≈34.6 A?) exists as a bilayer, and the 14 Å series is probably another cholesterol phase.  相似文献   

19.
Liposomes prepared with cholesterol and dipalmitoyl phosphatidylcholine were incubated with a clone of normal rat kidney fibroblast of cells in culture. The cells took up [14C]cholesterol in proportion to the concentration of liposomes in the incubation medium, and the uptake increased with time over the four hours of study. Two cell membrane enzymes, adenylate cyclase and (Na+ + K+)-ATPase, exhibited decreased activity after treatment with cholesterol-containing liposomes. The decrease in adenylate cyclase activity was directly proportional to the uptake of [14C]cholesterol. When a variety of subclones of NRK 5W were examined some were found to respond to cholesterol treatment and some did not. These data are consistent with the view that membrane cholesterol content plays a role in controlling the activity of some plasma membrane enzymes.  相似文献   

20.
Exposure of intact brush border membrane vesicles of hog kidney cortex to cholesterol oxidase resulted in 24% oxidation of membrane cholesterol compared with more than 95% oxidation of cholesterol in lipids isolated from membranes, showing that cholesterol is asymmetrically distributed in membranes. Phospholipase C, hydrolyzed 76% of phosphatidylcholine and 10–12% phosphatidylethanolamine while phosphatidylserine was not hydrolyzed, thus indicating that majority of phosphatidylcholine is present on the outer surface of these vesicles while phosphatidylethanolamine and phosphatidylserine are present on the inner surface. Methylation of phospholipids in brush border membrane with S-adenosyl-[methyl-3H]methionine resulted in the formation of phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine and phosphatidylcholine from endogenous phosphatidylethanolamine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 to 10. Addition of exogenous mono- and dimethylphosphatidylethanolamine derivatives enhanced methyl group incorporation by 4–5-fold as compared to the addition of phosphatidylethanolamine. The conversion of endogenous phosphatidylethanolamine to phosphatidyl-N-monomethylethanolamine or addition of exogenous phosphatidylmonomethylethanolamine to brush border membrane did not result in a change in bulk membrane fluidity as determined by fluorescence polarization of diphenylhexatriene. Methylation of phosphatidylethanolamine in brush border membrane did not affect the Na+-dependent uptake of either d-glucose or phosphate, although the accessibility of cholesterol in membrane to cholesterol oxidase was diminished by 21%, presumably due to altered flip-flop movement of cholesterol in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号