首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Leakage of the entrapped anionic fluorophore carboxyfluorescein was used as a measure of the permeability of liposomes to several different acids. Carboxyfluorescein leakage increased with increasing buffer concentration at a given pH and depended on its chemical nature: apolar weak acids such as acetic or pyruvic acids induced fast leakage at relatively high pH (4 to 5), while glycine, aspartic, citric and hydrochloric acids induced leakage only at lower pH. Fluorescence leakage measurements reflected the acidification of the liposomes' aqueous spaces, which was primarily caused by the diffusion of undissociated acid molecules across the lipid bilayer. A simple mathematical model in accord with this hypothesis and assuming that carboxyfluorescein leakage was directly related to the proportion of its neutral lactone form, described satisfactorily the carboxyfluorescein leakage kinetics and allowed rough estimation of permeability coefficients for carboxyfluorescein (neutral lactone form; 9 · 10?9 cm · s?1), acetic acid (>1 · 10?7cm · s?1) and glycine (cation: 6 · 10?9 cm · s?1). These results are consistent with low effective proton permeability of liposomes (<5 · 10?12cm · s?1) and with the permeability coefficient of HCl (3 · 10?3 cm · s?1) reported by Nozaki and Tanford ((1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4324–4328). Diffusion of weak acid molecules across lipid membranes has implications for drug encapsulation and delivery, and may be of biological significance.  相似文献   

2.
Diffusion of histamine, theophylline and tryptamine through planar lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine plus cholesterol (1 : 1 mol ratio) in tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to nonionic and ionic species. Only the nonionic forms crossed the membrane at a significant rate. The membrane permeabilities to the nonionic species were: histamine, 3.5 · 10?5cm · s?1; theophylline, 2.9 · 10?4cm · s?1; and tryptamine, 1.8 · 10?1cm · s?1. Chemical reactions in the unstirred layers are important in the transport of tryptamine and theophylline, but not histamine. For example, as pH decreased from 10.0 to 7.5 the ratio of nonionic (B) to ionic (BH+) tryptamine decreased by 300-fold, but the total tryptamine permeability decreased only 3-fold. The relative insensitivity of the total tryptamine permeability to the ratio, [B]/[BH+], is due to the rapid interconversion of B and BH+ in the instirred layers. Our model describing diffusion and reaction in the unstirred layers can explain some ‘anomalous’ relationships between pH and weak acid/base transport through lipid bilayer and biological membranes.  相似文献   

3.
4.
EPR spectra of oxidized R. gelatinosa HiPIP demonstrate two kinds of temperature dependent changes which can be analyzed in terms of an excited state at 142 ± 10cm?1 and a second excited state at 490 ± 100cm?1. These states represent further verification of antiferromagnetic exchange among the 4 irons in this tetranuclear cluster, with a value for the coupling constant of J = ?44cm?1. Aside from resonance Raman spectroscopic results, this is the first report of a ladder of excited states predicted for exchange coupled ions.  相似文献   

5.
Bacteriophage φ6 has been studied by small-angle X-ray scattering, intensity-fluctuation spectroscopy, analytical ultracentrifugation, and spectroscopy. The sedimentation coefficient (s200, w) is 375 S, the diffusion coefficient (D200, w) is 2.66 · 10?8 cm2/s. Using the Svedberg equation and an estimate of the partial specific volume, the Mr is 1.49 ± 0.32 · 108.A simple model which describes φ6, is a central sphere consisting of RNA and protein of radius 330 Å and an outer shell of low electron density 40 Å thick. The RNA may form five concentric shells in the region r = 140?290 A?  相似文献   

6.
The transport of 3-O-methylglucose in white fat cells was measured under equilibrium exchange conditions at 3-O-methylglucose concentrations up to 50 mM with a previously described method (Vinten, J., Gliemann, J. and Østerlind, K. (1976) J. Biol. Chem. 251, 794–800). Under these conditions the main part of the transport was inhibitable by cytochalasin B. The inhibition was found to be of competitive type with an inhibition constant of about 2.5 · 10?7 M, both in the absence and in the presence of insulin (1μM). The cytochalasin B-insensitive part of the 3-O-methylglucose permeability was about 2 · 10?9 cm · s?1, and was not affected by insulin. As calculated from the maximum transport capacity, the half saturation constant and the volume/ surface ratio, the maximum permeability of the fat cell membrane to 3-O-methylglucose at 37°C and in the presence of insulin was 4.3 · 10?6 cm · s?1. From the temperature dependence of the maximum transport capacity in the interval 18–37°C and in the presence of insulin, an Arrhenius activation energy of 14.8 ± 0.44 kcal/mol was found. The corresponding value was 13.9 ± 0.89 in the absence of insulin. The half saturating concentration of 3-O-methylglucose was about 6 mM in the temperature interval used, and it was not affected by insulin, although this hormone increased the maximum transport capacity about ten-fold to 1.7 mmol · s?1 per 1 intracellular water at 37°C.  相似文献   

7.
Robert F. Anderson 《BBA》1983,723(1):78-82
The bimolecular decay rates (2k) of the flavosemiquinones (FH·F?) of riboflavin, FMN and FAD have been determined using pulse radiolysis. The rates (defined as d[FH·F?]dt = ?2k[FH·F?]2) for the neutral flavosemiquinones at zero ionic strength and pH 5.9 are (in units of mol?1·dm3·s?1): (1.2 ± 0.1)·109, (5.0 ± 0.2)·108 and (1.4 ± 0.1)·108; and for the anionic flavosemiquinones at pH 11.2 (5.4 ± 0.9)·108, (4.5 ± 0.3)·107 and (8.5 ± 1.3)·106, respectively. The kinetic salt effect has been used to formulate rate equations for each flavin to adjust for ionic strength effects.  相似文献   

8.
The lateral diffusion coefficients (D) of the molecular fluorescence probe 3,3′-dioctadecylindocarbocyanine iodide (DII) in the membrane of discoid erythrocyte ghosts has been measured with the photobleaching technique between 7°C and 40°C. A fluorescence microscope which allows bleaching experiments within small local fields (approx. 1 μm2) at high magnification (X1600) has been used for these measurements. The diffusion coefficient increases from D = 9 · 10?10cm2/s to D = 7.5 · 10?9cm2/s from 7 to 40°C. An increase in membrane fluidity between 12°C and 17°C indicates a conformational change of the lipid bilayer moiety in this temperature region. The diffusion coefficient measured in the regions between the spicules of echinocytes is appreciably smaller than in the untransformed discoid ghosts. In the myelin tubes originating from cells, the lateral diffusion is somewhat larger (about a factor of 2) than in the non-transformed ghosts. With the fluorescence probe technique the rate of growth of myelin tubes of 0.3 μm diameter has been estimated.  相似文献   

9.
The mode of binding of Vicia graminea125I-labelled lectin to human M and N erythrocytes at 4°C has been investigated. The labelled lectin retained the full activity of native lectin. Lectin association at 4°C was characterized by a t12 of 3 to 5 min, reaching steady-state within 15 min. Incubation of cells for 15 min at 4°C with increasing concentrations of Vicia graminea125I-labelled lectin showed that saturation binding occurred. Scatchard analysis of equilibrium data determined over a wide range of lectin concentrations yielded a curvilinear plot with an upward concave slope; this representation indicated that there was not a single homogeneous class of noninteracting binding sites. This result could indicate two or more independent classes of binding sites or one class of interacting sites exhibiting negative cooperativity. Since unlabelled lectin, which at the concentration used, rapidly binds to available receptors, did not affect the dissociation rate of the labelled lectin and since identical Scatchard plots were found using native and formaldehyde-fixed erythrocytes we conclude that there are two classes of independent Vicia graminea binding sites on human erythrocytes. Computer analysis of the Scatchard plots gave high- and low-affinity constant (7.07±1.1) · 107 M?1 and (0.2±0.01) · 107 M?1, respectively, for N erythrocytes and (1.13±0.18) · 107 M?1 and (0.24±0.01) · 107 M?1, respectively for the M cells. N erythrocytes were estimated to have 0.085 · 105 high-affinity and 2.1 · 105 low-affinity sites and M erythrocytes, 0.011 · 105 high affinity and 0.13 · 105 low-affinity sites. N cells therefore have 10-times as many sites as M cells. Studies of the dissociation of 125I-labelled lectin from N and M cells in the presence of unlabelled lectin gave dissociation rate constants of 51 · 10?4 s?1 and 1.97 · 10?4 s?1 for the high- and low-affinity sites of N cells and 13 · 10?4 s?1 and 1.6 · 10?4 s?1 for the high- and low-affinitym sites of M cells, indicating that the binding of Vicia graminea lectin to human erythrocytes is reversible.  相似文献   

10.
The osmotic permeability coefficient (Pf) for water movement across Novikoff hepatoma cells was found to be 82 ± 3 (S.E.) · 10?5 cm · s?1 at 20°C. The corresponding diffusional permeability coefficient for 3HHO (Pd) was 97 ± 10 (S.E.) · 10?5 cm · s?1, therefore the ratio PfPd is close to unity. The apparent activation energy for water filtration was 10.4 ± 0.4 (S.E.) kcal · mol?1. This value is significantly greater than the activation energy for the self diffusion of water. The product of the hydraulic permeability coefficient and the viscosity coefficient for water was temperature-dependent. However, the product of the hydraulic permeability coefficient and the viscosity coefficient for membrane lipid did not vary with temperature. These data are interpreted as evidence for water movement across a lipid membrane barrier rather than through aqueous channels.  相似文献   

11.
J.A. Van Best  L.N.M. Duysens 《BBA》1975,408(2):154-163
The kinetics of the fluorescence yield Ф of chlorophyll a in Chlorella pyrenoidosa were studied under anaerobic conditions in the time range from 50 μs to several minutes after short (t12 = 30 ns or 5 μs) saturating flashes. The fluorescence yield “in the dark” increased from Ф = 1 at the beginning to Ф ≈ 5 in about 3 h when single flashes separated by dark intervals of about 3 min were given.After one saturating flash, Ф increased to a maximum value (4–5) at 50 μs, then Ф decreased to about 3 with a half time of about 10 ms and to the initial value with a half time of about 2 s. When two flashes separated by 0.2 s were given, the first phase of the decrease after the second flash occurred within 2 ms. After one flash given at high initial fluorescence yield, the 10-ms decay was followed by a 10 s increase to the initial value. After the two flashes 0.2 s apart, the rapid decay was not follewed by a slow increase.These and other experiments provided additional evidence for and extend an earlier hypothesis concerning the acceptor complex of Photosystem II (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256; Velthuys, B. R. and Amesz, J. (1974) Biochim. Biophys. Acta 333, 85–94): reaction center 2 contains an acceptor complex QR consisting of an electron-transferring primary acceptor molecule Q, and a secondary electron acceptor R, which can accept two electrons in succession, but transfers two electrons simultaneously to a molecule of the tertiary acceptor pool, containing plastoquinone (A). Furthermore, the kinetics indicate that 2 reactions centers of System I, excited by a short flash, cooperate directly or indirectly in oxidizing a plastohydroquinone molecule (A2?). If initially all components between photoreaction 1 and 2 are in the reduced state the following sequence of reactions occurs after a flash has oxidised A2? via System I: Q?R2? + A → Q?R + A2? → QR? + A2?. During anaerobiosis two slow reactions manifest themselves: the reduction of R (and A) within 1 s, presumably by an endogenous electron donor D1, and the reduction of Q in about 10 s when R is in the state R? and A in the state A2?. An endogenous electron donor, D2, and Q? compete in reducing the photooxidized donor complex of System II in reactions with half times of the order of 1 s.  相似文献   

12.
The binding of chlorpromazine · HCl at the human erythrocyte surface has been detected through its effect on cellular electrophoretic mobility. Incubation of erythrocytes (approx. 5 · 106/ml) in 23 μM chlorpromazine · HCl resulted in a reduction of negative electrophoretic mobility from the control value of ?1.11 ± 0.01 (μm · s?1)/(V · cm?1) to ?1.00 ± 0.02 (μm · s?1)/(V · cm?1) (pH 7.2, ionic strength 0.155). This mobility change was completely reversed when chlorpromazine · HCl was removed by centrifugal washing. Increasing the drug concentration to 70μM did not affect the mobility change, indicating saturation of the electrophoretically detectable drug binding sites over chlorpromazine · HCl concentration range studied here. The effect of the 23 μM chlorpromazine · HCl on electrophoretic mobility was also measured in isotonic media of reduced ionic strength. The drug-induced reduction in negative surface charge density was found to be independent of ionic strength over the range 0.155 (Debye length, 0.8 nm) to 0.00310 (Debye length, 5.7 nm).Fixation of erythrocytes with glutaraldehyde affected neither the normal electrophoretic mobility of discocytes nor the reduced electrophoretic mobility of chlorpromazine · HCl-induced stomatocytes. When these stomatocytes were first fixed with glutaraldehyde, then washed free of chlorpromazine · HCl, they retained the stomatocyte form while regaining a normal control electrophoretic mobility. Conversely, when discocytes fixed in that form were treated with chlorpromazine · HCl, they showed the same mobility change as did fixed or unfixed stomatocytes. The drug-induced mobility change is therefore independent of the shape change, but reflects a contribution to cellular surface charge density from the membrane-bound chlorpromazine · HCl molecules. From the charge reduction, it is estimated that about 106 chlorpromazine · HCl molecules are bound at the electrokinetic cell surface and occupy approximately 0.4% of the total surface area.  相似文献   

13.
Bovine neurophysin II, a hormone carrier protein, has been crystallized as a binary complex with l-phenylalanyl-l-tyrosine amide, a peptide known to bind neurophysin at its hormone binding site. The crystals belong to space group P212121 with cell constants of a = 121.6(10) A?, b = 67·9(6) A? and c = 62·1(6) A?. The density of the crystal is 1.156 g/cm3. There is a tetramer or two dimers in an asymmetric unit.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy of the iron-semiquinone complex in photosynthetic bacterial cells and chromatophores of Rhodopseudomonas viridis is reported. Magnetic fields are used to orient the prolate ellipsoidal-shaped cells which possess a highly ordered internal structure, consisting of concentric, nearly cylindrical membranes. The field-oriented suspension of cells exhibits a highly dichroic EPR signal for the iron-semiquinone complex, showing that the iron possesses a low-symmetry ligand field and exists in a preferred orientation within the native reaction-center membrane complex. The EPR spectrum is analyzed utilizing a spin hamiltonian formalism to extract physical information describing the electronic structure of the iron and the nature of its interaction with the semiquinones. Exact numerical solutions and analytical expressions for the transition frequencies and intensities derived from a perturbation theory expansion are presented, and a computer-simulated spectrum is given. It has been found that, for a model which assumes no preferred orientation within the plane of the membranes, the orientation of the Fe2+ ligand axis of largest zero-field splitting (Z, the principal magnetic axis) is titled 64±6° from the membrane normal. The ligand field for Fe2+ has low symmetry, with zero-field splitting parameters of |D1|=7.0±1.3 cm?1 and |E1|=1.7±0.5 cm?1 and |E1D1|=0.26 for the redox state Q1?Fe2+Q2?. The rhombic character of the ligand field is increased in the redox state Q1Fe2+Q?2, where 0.33>|E2D2|>0.26. This indicates that the redox state of the quinones can influence the ligand field symmetry and splitting of the Fe2+. There exists an electron-spin exchange interaction between Fe2+ and Q?1 and Q?2, having magnitudes |J1|=0.12±0.03 cm?1 and |J2|?0.06 cm?1, respectively. Such weak interactions indicate that a proper electronic picture of the complex is as a pair of immobilized semiquinone radicals having very little orbital overlap (probably fostered by superexchange) with the Fe2+ orbitals. The exchange interaction is analyzed by comparison with model systems of paramagnetic metals and free radicals to indicate an absence of direct coordination between Fe2+ and Q?1 and Q?2. Selective line-broadening of some of the EPR transitions, involving Q? coupling to the magnetic sublevels of the Fe2+ ground state, is interpreted as arising from an electron-electron dipolar interaction. Analysis of this line-broadening indicates a distance of 6.2–7.8 ? between Fe2+ and Q?1, thus placing Q1 outside the immediate coordination shell of Fe2+.  相似文献   

15.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

16.
V.A. Shuvalov 《BBA》1976,430(1):113-121
The dependence of the delayed luminescence of Photosystem I on the state of the reaction centers has been studied. Light flash induces a charge separation in the centers: P-700 · P-430 P-700+ · P-430?. Dark recombination of charges is accompanied by the recombination luminescence with τ12 ? 20 ms.If the centers are in the P-700 · P-430? state or if P-430 is inactivated by heat, then flashing of Photosystem I generates the triplet state chlorophyll with τ12 ? 0.5 ms. The triplet state has been measured by the delayed fluorescence of chlorophyll at 20 °C and 77 °K and by the chlorophyll phosphorescence at 77 °K. The delayed fluorescence at 20 °C arises from the thermal activation of the triplet state up to the excited singlet level of chlorophyll and at 77 °K it is due to triplet-triplet annihilation. The quantum yield of the triplet formation, estimated by a comparison of the light saturation curves of delayed fluorescence at 20 °C and of P-700 photooxidation under the same experimental (optical) conditions, is ≈ 0.9 of the P-700+ yield. Only one triplet of chlorophyll can be generated per P-700. Under heat inactivation of P-430 the triplet formation is not observed when P-700 is oxidized.It is assumed that the triplet-triplet annihilation at 77 °K is related with the strong interaction between the chlorophyll molecules in the pigment complex of Photosystem I. The possibility of a triplet participation in the primary processes of photosynthesis is discussed.  相似文献   

17.
A.J. Hoff  J.H. Van Der Waals 《BBA》1976,423(3):615-620
Microwave induced transitions in zero magnetic field have been observed in the photoinduced triplet of chloroplasts treated with dithionite by monitoring changes in the intensity of the 735 nm fluorescence band at 2°K. Similar results were obtained with chloroplasts treated with hydroxylamine plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The zero field parameters are D = 0.02794 ± 0.00007 cm?1, E = 0.00382 ± 0.00007 cm?1, i.e. equal to those of monomeric chlorophyll a to within the experimental error. The photoinduced triplet appears to be linked to Photosystem II. This indicates that the low temperature 735 nm fluorescence band of chloroplasts is at least partly due to Photosystem II.  相似文献   

18.
Reaction centers have been purified from chromatophores of Rhodopseudomonas viridis by treatment with lauryl dimethyl amine oxide followed by hydroxyapatite chromatography and precipitation with ammonium sulfate. The absorption spectrum at low temperature shows bands at 531 and 543 nm, assigned to two molecules of bacteriopheophytin b. The 600 nm band of bacteriochlorophyll b is resolved at low temperature into components at 601 and 606.5 nm. At room temperature the light-induced difference spectrum shows a negative band centered at 615 nm, where the absorption spectrum shows only a weak shoulder adjacent to the 600 nm band. The fluorescence spectrum shows a band at 1000 nm and no fluorescence corresponding to the 830 nm absorption band. Two molecules of cytochrome 558 and three of cytochrome 552 accompany each reaction center. The differential extinction coefficient (reduced minus oxidized) of cytochrome 558 at 558 nm was estimated as 20 ± 2 mM?1 · cm?1 through a coupled reaction with equine cytochrome c. The extinction coefficient of reaction centers at 960 nm was determined to be 123 ± 25 mM?1 · cm?1 by measuring the light-induced bleaching of P-960 and the coupled oxidation of cytochrome 558. The corresponding extinction coefficient at 830 nm is 300 ± 65 mM?1 · cm?1. The absorbance ratio a280nma830nm in our preparations was 2.1, and there was 190 kg protein per mol of reaction centers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed three major components of apparent molecular weights 31 000, 37 000 and 41 000.  相似文献   

19.
A study was made with a modulated oxygen electrode of the effect of variations of oxygen concentration on photosynthetic oxygen evolution from algal cells. When Chlorella vulgaris is examined with a modulated 650 nm light at 22°C, both the oxygen yield and the phase lag between the modulated oxygen signal and the light modulations have virtually constant values between 800 and 120 ergs · cm?1 · s?1 if the bathing medium is in equilibrium with the air. Similar results are obtained at 32°C between 1600 and 120 ergs · cm?2 · s?1. Under anerobic conditions both the oxygen yield and the phase lag decrease if the light intensity is lowered below about 500 ergs · cm?2 · s?1 at 22°C or about 1000 ergs · cm?2 · s?1 at 32°C. A modulated 706 nm beam also gives rise to these phenomena but only at significantly lower rates of oxygen evolution. The cells of Anacystis nidulans and Porphyridium cruentum appear to react in the same way to anaerobic conditions as C. vulgaris. An examination of possible mechanisms to explain these results was performed using a computer simulation of photosynthetic electron transport. The simulation suggests that a backflow of electrons from a redox pool between the Photosystems to the rate-limiting reaction between Photosystem II and the water-splitting act can cause a decrease in oxygen yield and phase lag. If the pool between the Photosystems is in a very reduced state a significant cyclic flow is expected, whereas if the pool is largely oxidized little or no cyclic flow should occur. It is shown that the effects of 706 nm illumination and removal of oxygen can be interpreted in accordance with these proposals. Since a partial inhibition of oxygen evolution by 3-(3.4-dichlorophenyl)-1,1-dimethylurea (10?8 M) magnifies the decreases in oxygen yield and phase lag, it is proposed that the pool which cycles back electrons is in front of the site of 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition and is probably the initial electron acceptor pool after Photosystem II.  相似文献   

20.
The rotational correlation time of melittin, obtained from the nanosecond anisotropy of the emission from its single tryptophan residue, has been found to increase considerably in phosphate solution relative to that in aqueous solution, consistent with protein aggregation. The steady-state fluorescence spectra as well as the absorption spectra in phosphate solution exhibit a very good degree of similarity with those of the protein bound to egg phosphatidylcholine (PC) and distearoylphosphatidylcholine (DSPC) bilayer liposomes. The value of the second-order rate constant for dynamic quenching, kq = 1.4·109M?1·s?1, by acrylamide in 0.5 M phosphate solution is comparable to those for the protein-phospholipids complexes (1·109 and 0.7·109 M?1·s?1 for egg PC and DSPC, respectively). Similarities are also found in the nanosecond properties. There is a much stronger and quite similar dependence of the fluorescence spectra on time in the nanosecond range and of the fluorescence decay times on the emission wavelength in both cases as compared to the case in aqueous solution. These observations support the notion that melittin binds to the phospholipids in an aggregated form. The results suggest that the reduction in the kq values of bound melittin relative to that in aqueous solution and the blue shift of the fluorescence spectrum (from 352 to 337 nm) are brought about by shielding of the tryptophan residue from the solvent through a combination of protein aggregation and enhancement of its α-helical content (suggested by published CD data). The magnitude of the kq values for bound melittin, however, is still relatively high implying the occurrence of rather frequent encounters between the tryptophan residue and the hydrophilic acrylamide molecules. Thus, the residue is found not to penetrate deep into the phospholipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号