首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain sterols from chick embryos (11 and 18 days of incubation) and mature rats, previously injected with [2-14C]mevalonate, were analysed. Acetate derivatives of the sterols were chromatographed on Silica Gel:Celite:AgNO3 columns. Sterol fractions were assayed for radioactivity and the amounts determined by gas chromatography. Sterol structures were elucidated by gas chromatography-mass spectrometry. The method used allowed the identification of some sterols representing no more than 0-01 per cent of the total mixture. The following brain sterols were identified: cholesterol, cholestanol, cholest-5,24-dien-3β-ol (desmosterol); 4,4′-dimethyl-cholest-8-en-3β-ol, 4α-methyl-cholest-8-en-3β-ol, cholest-8-en-3β-ol, 4,4′-dimethyl-choIest-8,24-dien-3β-ol, 4α-methyl-cholest-8,24-dien-3β-ol, cholest-8,24-dien-3β-ol and cholest-7,24-dien-3β-ol. Small amounts of other sterols including polyhydroxy sterols, were also detected. There were no qualitative differences in the sterols detected in developing and mature brain. In the developing chick brain, cholesterol represented approximately 90 per cent of the total sterols. In the mature rat brain, cholesterol accounted for 98 per cent of the sterols. The adult rat brain, as well as the embryonic chick brain, demonstrated the capacity to incorporate mevalonate into cholesterol precursors and cholestanol. The sterols retaining the double bond in the lateral chain, that is, those of the Δ8,24 series with 29, 28 and 27 carbon atoms and desmosterol, were highly labelled compared with the other identified intermediates. The possibility, supported by our data, that a preferential biosynthetic route for cholesterol exists in brain, is discussed.  相似文献   

2.
Mixed life cycle stages of rat-derived Pneumocystis carinii were isolated from host lungs and their sterols were compared with those present in lungs from normal and immunosuppressed uninfected rats. Gas-liquid chromatography consistently detected, resolved, and quantified 9, 10, and 20 sterol components in the total nonsaponifiable neutral lipid fraction of lungs from normal rats, lungs from immunosuppressed uninfected rats, and P. carinii preparations, respectively. In all samples, cholesterol was the most abundant sterol present, comprising 97%, 93%, and 78% of total sterols in lungs from normal rats, lungs from immunosuppressed uninfected rats, and P. carinii , respectively. Tentative identifications of several rat lung and P. carinii minor sterols were made based on gas-liquid chromatogram retention times and fragmentation patterns from mass spectral analyses. Campesterol (ergost-5-en-3-ol), cholest-5-en-3-one, and β -sitosterol (stigmast-5-en-3-ol) were among the minor components present in both types of lung controls, and were also components of P. carinii sterols. In contrast to lung controls, the sterols of P. carinii were enriched in C28 and C29 sterols with one or two double bonds, and a hydroxyl group at C-3 (ergost-5-en-3-ol, ergost-7-en-3-ol, ergosta-dien-3-ol, stigmast-5-en-3-ol, stigmast-7-en-3-ol and stigmasta-dien-3-ol). Steryl esters of P. carinii , probably stored in cytoplasmic lipid droplets, were dominated by those present in the host lung. In separate studies. 3-hydroxy-3-methylglutaryl coenzyme A activity, a key enzyme in the regulation of sterol biosynthesis, was detected in purified P. carinii preparations and incorporation of radiolabeled squalene and mevalonate was observed. Together, these results suggest that the parasite readily takes up and incorporates host sterols, and that the organism synthesizes some of its own "metabolic sterols"  相似文献   

3.
The sterol composition of the cold water brown alga Agarum cribosum was determined by GC—MS. Six of the seven sterols found were identified as stigmata-5,(E)-24(28)-dien-3β-ol (fucosterol), 24-methylenecholest-5-en-3β-ol (24-methylenecholesterol), cholest-5-en-3β-ol (cholesterol), 3β-hydroxycholest-5-en-24-one (24-ketocholesterol), 24ξ-stigmasta-5,28-diene-3β,24-diol (saringosterol) and cholesta-5, 24-dien-3β-ol (desmosterol).  相似文献   

4.
Several cholesterol analogs structurally modified in nuclear substitutions were tested for sustaining the growth of the silkworm Bombyx mori. 5α-Cholest-7-en-3β-ol, 5,7-cholestadien-3β-ol and cholesteryl acetate can replace cholesterol as sterol source for B. mori. Considerably good growth was also obained with 5α-cholest-14-en-3β-ol and 5α-cholesta-6,8(14)-dien-3β-ol. Other sterols tested were either partially effective or ineffective as nutrients.  相似文献   

5.
The catalysis by rat liver microsomes under anaerobic conditions, of the conversion of [3α-3H]14α-methyl-5α-cholest-7-en-3β-ol and of [2,4-3H]14α-hydroxymethyl-5α-cholest-7-en-3β-ol to labeled 14α-methyl-5α-cholest-8-en-3β-ol and 14α-hydroxymethyl-5α-cholest-8-en-3β-ol, respectively, has been demonstrated. This finding is of importance in evaluating past research in this area and in consideration of pathways and mechanisms involved in enzymatic removal of carbon atom 32 of 14α-methyl sterols. Also described herein are syntheses of [2,4-3H]14α-hydroxymethyl-5α-cholest-7-en-3β-ol and 3β-acetoxy-14α-methyl-5α-cholest-8-ene.  相似文献   

6.
Almost an of the solvent-extractable sterols and their nuclearsaturated analogues in a sample of Walvis Bay surface sediment have been analysed by capillary GLC and GC-MS, and by coinjection with a variety of standards. The presence in sediments of 22-trans-24-nor-5α-cholest-22-en-3β-ol, 24-methylene-5α-cholestan-3β-ol, and components tentatively assigned as 23,24-dimethylcholesta-5,22-dien-3β-ol and 23,24-dimethyl-5α-cholest-22-en-3β-ol has been demonstrated for the first time. A novel sterol and its saturated analogue have also been found. The sterol distribution cannot be related solely to the reported major input of phytoplankton; the presence of 22,23-methylene-23,24-dimethylcholest-5-en-3β-ol and its saturated analogue indicates a coelenterate contribution. The analysis emphasises the necessity of glass capillary columns and coinjection of standards.  相似文献   

7.
A number of potential intermediates of lanosterol1 14α-demethylation have been synthesized for the first time and labelled with 3H. A direct comparison of the rates of conversion of each of these materials to cholesterol and 5α-cholest-7-en-3β-ol by a cell-free system from rat liver has been made. Although 5α-lanost-8-en-3β,32-diol and 3β-hydroxy-5α-lanost-8-en-32-al were converted to C27 sterols at a greater rate than was 5α-lanost-8-en-3β-ol, the apparent Km values were larger than those expected if these compounds were obligatory intermediates. 5α-Lanost-8-en-3β,15α-diol and 5α-lanost-8-en-3β,15β-diol were poorer precursors of cholesterol but each was extensively converted both to a more polar compound and to the corresponding 3β,15-diol diester.  相似文献   

8.
The free sterol mixture of the sponge Psammaplysilla purpurea was shown to contain aplysterol as the major constituent. In addition to other sterols such as 5,7-cholestadien-3β-ol, cholesterol, 5α-cholestan-3β-ol, 24ε-methylcholesta-5,22-dien-3β-ol, 24ε-methylcholesterol, 24ε-ethylcholesta-5,22-dien-3β-ol and 24,28-dehydroaplysterol, a new minor sterol was isolated and shown by spectral analysis as well as partial synthesis to be 3β-hydroxy-26,27-bisnorcholest-5-en-24-one. The sterol mixture contains no other short side chain or 24-keto sterols except for small amounts of 3β-hydroxypregn-5-en-20-one and 3β-hydroxy-5α-pregnan-20-one.  相似文献   

9.
The sterol fractions of eight leafy liverworts were analyzed by GLC and GC-MS. Five 3β-sterols, cholest-5-en-3β-ol, 24-methylcholest-5,22-dien-3β-ol, 24-methylcholest-5-en-3p-ol, 24-ethylcholest-5,22-dien-3β-ol and 24-ethylcholest-5-en-3β-ol, were detected in all samples but there were differences in the relative amounts present.  相似文献   

10.
Sterols, a group of stable lipid compounds, are often used as biomarkers in marine biogeochemical studies to indicate sources of organic matter. In this study, sterols in 13 species of major bloom-forming algae in China, which belong to Dinophyceae, Bacillariophyceae, Ulvophyceae, and Pelagophyceae, were analyzed with gas chromatography-mass spectrometry (GC–MS) to test their feasibility in representing different types of harmful algal blooms (HABs). It was found that (24Z)-stigmasta-5,24-dien-3β-ol (28-isofucosterol) was a major sterol component in green-tide forming macroalga Ulva prolifera. In bloom-forming dinoflagellates Alexandrium spp., Prorocentrum micans and Scrippsiella trochoidea, (22E)-4α,23-dimethyl-5α-ergost-22-en-3β-ol (dinosterol) was detected in addition to cholest-5-en-3β-ol (cholesterol), (22E)-ergosta-5,22-dien-3β-ol, (22E)-stigmasta-5,22-dien-3β-ol and other minor sterol components. In brown-tide forming pelagophyte Aureococcus anophagefferens, (24E)-24-propylcholesta-5,24-dien-3β-ol ((24E)-24-propylidenecholesterol) and (24Z)-24-propylcholesta-5,24-dien-3β-ol ((24Z)-24-propylidenecholesterol) were detected together with cholesterol, (22E)-stigmasta-5,22-dien-3β-ol, stigmast-5-en-3β-ol and campest-5-en-3β-ol. Among the selected bloom-forming diatoms, Chaetoceros sp. and Pseudo-nitzschia spp. only produced cholesterol, while Cylindrotheca closterium produced solely (22E)-ergosta-5,22-dien-3β-ol. Sterol content in four bloom-forming algal species correlates well with their biomass or abundance. It's proposed that 28-isofucosterol could serve as a promising biomarker for green algae in green-tide studies. Dinosterol and (24Z)-24-propylidenecholesterol can be used as potential biomarkers to represent bloom-forming dinoflagellates and pelagophytes, while (22E)-ergosta-5,22-dien-3β-ol is not a good indicator for diatoms.  相似文献   

11.
The photosensitized oxidation of cholest-4-en-3β-ol in which singlet molecular oxygen is implicated yielded cholest-4-en-3-one and the isomeric epoxides 4α,5-epoxy-5α-cholestan-3-one and 4β,5-epoxy-5β-cholestan-3-one, the epoxides being formed in the ratio 3 : 1. Oxidation of cholest-4-en-3-one by alkaline hydrogen peroxide likewise yielded the isomeric 4,5-epoxides but in the ratio 1 : 7.4. Attempted use of cholest-4-en-3β-ol to intercept singlet molecular oxygen putatively generated in the disproportionation of hydrogen peroxide gave a very complex product mixture of over 50 components from which only cholest-4-en-3-one could be identified. However, neither isomeric 4,5-epoxycholestan-3-one was detected among the products. These data establish that it is unwarranted to infer the action of single molecular oxygen in systems containing cholest-4-en-3β-ol merely by product analysis where the product 4α,5-epoxy-5α-cholestan-3-one is formed.  相似文献   

12.
The sterol composition of seven strains of marine peridinioid dinoflagellates comprising the four known species of Heterocapsa Stein was examined by gas chromatography-mass spectrometry to determine the utility of these compounds in systematics. Cholest-5-en-3β-ol (cholesterol), 24-methyl-cholest-5-en-3β-ol (24-methylcholesterol), 4α,24(S)-dimethyl-5α-cholestan-3β-ol (4,24-dimethylcholestanol), 4α,23,24(R)-trimethyl-5α-cholest-22-en-3β-ol (dinosterol), 4α,23ξ,24ξ-trimethyl-5α-cholestan-3β-ol (dihydrodinosterol), and an unknown sterol were detected. Sterol composition does not vary significantly from species to species within the genus Heterocapsa and thus cannot be used for species differentiation. Sterols may, however, have value in defining the properties of dinoflagellate taxa above the family level. Over the course of the growth curve for Heterocapsa niei (Loeblich) Morrill & Loeblich 4,24-dimethylcholestanol and dinosterol covaried, suggesting that 4,24-dimethylcholestanol is converted into dinosterol by a previously proposed bioalkylation scheme.  相似文献   

13.
Twelve species of red algae belonging to the Orders Gelidiales, Cryptonemiales and Gigartinales were examined for sterols. Four species contained cholestan-3β-ol as the major sterol, accompanied by C26, C28 and C29 stanols. Sterols not previously reported in algae were 24-dimethyl-5α-chol-22-en-3β-ol, cholest-22-en-3β-ol, cholest-7-en-3β-ol, 24ξ-methylcholest-22-en-3β-ol, 24-methylenecholestan-3β-ol, 24ξ-ethylcholestan-3β-ol and isofucostanol.  相似文献   

14.
The rate of oxidation of cholesterol and its analogues to pregnenolone (3beta-hydroxypregn-5-en-20-one) by various mitochondrial preparations was measured. Sterols with the cholest-5-en-3beta-ol ring system and saturated side chains of different lengths were converted into pregnenolone rat rates similar to that of cholesterol. This marked lack of mitochondrial specificity towards the steroid side chains is in direct contrast with the rat liver microsomal cholesterol 7alpha-hydroxylase, which has a high specificity for the side chain. Steroids that retain the ring system, but contain hydroxyl groups at various points in the side chain, are converted into pregnenolone at rates three to eight times higher than in cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol.  相似文献   

15.
The 4-desmethylsterol fraction of the liverwort Palavicinnia lyellii is composed of 36% 24β-methylcholest-5-en-3β-ol (dihydrobrassicasterol), 16% 24α-methylcholest-5-en-3β-ol (campesterol), 33% 24α-ethylcholest-5-en-3β-ol (sitosterol) and 15% 24ξ-ethylcholesta-5,22-dien-3β-ol.  相似文献   

16.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

17.
中国南海侧扁软柳珊瑚中孕甾烷类化学成分的研究(英文)   总被引:1,自引:0,他引:1  
从南海侧扁软柳珊瑚Subergorgia suberosa的二氯甲烷-甲醇提取物中首次分离鉴定了8个孕甾烷类化合物,经波谱鉴定为3β-O-palmitoyl-pregn-5-ene-20-one-3-ol (1),3β-O-palmitoyl-5α-pregn-20-one-3-ol (2),5α-pregn-1-ene-3,20-dione (3),3β,5α-pregn-20-one-3-ol (4),3β-pregn-5-ene-20-one-3-ol (5),3β,5β-pregn-20-one-3-ol (6),5β-pregn-3,20-dione (7),pregn-4-ene-3,20-dione (8).其中化合物1,2为新化合物.  相似文献   

18.
《Phytochemistry》1987,26(3):731-733
The sterols from eight species in seven genera of the Cactaceae are 24-alkyl-Δ5-sterols. In all eight species, Echinopsis tubiflora, Pereskia aculeata, Hylocereus undatus, Notocactus scopa, Epiphyllum sp., Schlumbergera bridgesii, Opuntia comonduensis and O. humifusa, the dominant sterol is sitosterol (24α-ethylcholest-5-en-3β-ol) at 66–87% of the total sterol composition with the 24ξ-methylcholest-5-en-3β-ol present at 8–33%. Stigmasterol (24α-ethylcholesta-5,22E-dien-3β-ol) is present at 2–8% of the total sterol in P. aculeata, H. undatus, N. scopa and Epiphyllum sp. whereas cholesterol (cholest-5-en-3β-ol) is present in six species at levels of <0.1–5.0%. Avenasterol (24-ethylcholesta-7,24(28)Z-dien-3/gb-ol) and sitostanol (24α-ethyl-5α-cholestan-3β-ol) are each present in two species.  相似文献   

19.
Steroidal allenes, stigmasta-5,24(28),28-trien-3β-ol (allene-I) and cholesta-5,23,24-trien-3β-ol (allene-II), were tested for their inhibitory effects on growth, development, and steroid metabolism in the silkworm, Bombyx mori. The allenic analogue (I) of stigmasta-5,24(28)-dien-3β-ol (2) was found to be a specific inhibitor for the conversion of stigmast-5-en-3β-ol (1) to stigmasta-5, 24(28)-dien-3β-ol (2) and/or stigmasta-5,24(28)-dien-3β-ol (2) to 24,28-epoxy-stigmast-5-en-3β-ol (3) This inhibitor held the larvae in the second instar for more than 20 days without developing to the third instar, when administered alone or with the dietary sterols of stigmast-5-en-3β-ol (1) or stigmasta-5,24(28)-dien-3β-ol (2). The second allene (II) with a similar structure to cholesta-5,24-dien-3β-ol (4) was also found to be an inhibitor for insect growth and development, but it appeared not to be acting via inhibition of sterol dealkylation.  相似文献   

20.
The dinoflagellate Glenodiniumhallii was investigated for its sterol composition. Five of the six sterols were isolated and identified as cholest-5-en-3β-ol, (24ξ)-24-methylcholest-5-en-3β-ol, stigmasta-5,22-dien-3β-ol, (22E,24R)-4α,23,24-trimethyl-5α-cholest-22-en-3β-ol, and 4α,23ξ,24ξ-trimethyl-5α-cholestan-3β-ol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号