首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
For multilamella vesicles of DMPC, DPPC, DSPC, binary mixtures of DMPC-DPPC, DMPC-DSPC, DMPC-DPPE, DOPC and egg lecithin, the optical turbidity decreases significantly on the application of a magnetic field in excess of about 0.2 T, provided that the temperature is above the pretransition value. The turbidity reaches a limiting value for magnetic fields of about 2 T. The effect is attributed to augmentation of the diamagnetic anisotropy of the lipid molecules by clustering within the bilayer, with consequent orientation of either the individual ‘superdiamagnetic’ clusters or the whole liposome. It is suggested that, since most animal cell membranes are largely in the liquid crystalline phase, it is possible that homogeneous magnetic fields as low as 0.2 T may cause biologically significant changes within the membrane.  相似文献   

2.
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.  相似文献   

3.
The purpose of this paper is to demonstrate that the interaction of an aqueous soluble enzyme with lipid membranes is influenced by the lipid composition of the interphase. The results show that the interaction of an aqueous soluble protease, Rennet from Mucor miehei, depends on the exposure of the carbonyl and phosphate groups at the membrane interphase. The changes produced by the protease on the surface pressure of monolayers of dimyristoylphosphatidylcholine (DMPC); dioleoylphosphatidylcholine (DOPC); diphytanoylphosphatidylcholine (DPhPC); dipalmitoylphosphatidylcholine (DPPC); di-O-tetradecylphosphatidyl-choline [D(ether)PC]; dimyristoylphosphatidylethanolamine (DMPE); di-O-tetradecyl-phosphatidylethanolamine [D(ether)PE] were measured at different initial surface pressures. The meaning of the ΔΠ vs. Π curves was interpreted in the light of the concept of interphase given by Defay and Prigogine [R. Defay, I. Prigogine, Surface Tension and Adsorption, John Wiley & Sons, New York, 1966, pp. 273-277] considering the interphase as a bidimensional solution of polar head groups. With this approach, and based on reported evidences that carbonyls and phosphates are the main hydration sites of the lipid membranes, it is suggested that the mechanism of interaction of aqueous soluble protein involves water beyond the hydration shell. At high surface pressure, only water strongly bound to carbonyl and phosphate groups is present and the interaction is not occurring. In contrast, at low surface pressures, the protease-membrane interaction is a function of acyl chain for different polar groups. This is interpreted, as a consequence of the changes in the interfacial tension produced by the displacement of water confined between the hydrated head groups.  相似文献   

4.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

5.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号