首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

2.
The role of Cl- in photosynthetic O2 evolution has been investigated by measurement of the steady-state O2 rate and EPR of the electron donors responsible for the S2 multiline signal and Signal IIs upon Cl- depletion and substitution in Photosystem II membranes. Cl- removal has three effects upon the donor side of Photosystem II. (1) It abolishes O2 evolution reversibly, while decreasing the yield of the S2 multiline signal indicative of the manganese site of the O2-evolving complex in the S2 oxidation state. This decrease is brought about by (2) the reversible disconnection of the manganese complex from the reaction center; and by (3) deactivation of S1 centers having reduced primary acceptor QA to form SO centers having a reduced Signal IIs species. Reactivation of O2 evolution by anions confirms earlier work showing a requirement for a univalent anion of optimum charge density. The observed order of reactivation is Cl- greater than Br- approximately NO3- much greater than OH- approximately F-. Reactivation of the S2 multiline signal follows Cl- approximately Br- greater than NO3- approximately OH- greater than F-, in near correspondence with reactivation of O2-evolution rates. Cl- titrations of F- -inhibited samples reveal two binding sites for Cl- which differ in binding affinity by 11-fold. The higher-affinity site reactivates the S1----S2 light reaction, while the lower-affinity site reactivates the S3----S0 light reaction. The high affinity site is located within the O2-evolving complex at an undetermined site, while the lower-affinity site functions in coupling the reaction center photochemistry to the O2-evolving complex. The results are compared with Cl-/F- exchange equilibria for Mn3+ in solution. A model for the lower S-state transitions is presented in which specific oxidation state assignments are made for some of the donors and acceptors of Photosystem II.  相似文献   

3.
A comparative study of X-band EPR and ENDOR of the S2 state of photosystem II membrane fragments and core complexes in the frozen state is presented. The S2 state was generated either by continuous illumination at T=200 K or by a single turn-over light flash at T=273 K yielding entirely the same S2 state EPR signals at 10 K. In membrane fragments and core complex preparations both the multiline and the g=4.1 signals were detected with comparable relative intensity. The absence of the 17 and 23 kDa proteins in the core complex preparation has no effect on the appearance of the EPR signals. 1H-ENDOR experiments performed at two different field positions of the S2 state multiline signal of core complexes permitted the resolution of four hyperfine (hf) splittings. The hf coupling constants obtained are 4.0, 2.3, 1.1 and 0.6 MHz, in good agreement with results that were previously reported (Tang et al. (1993) J Am Chem Soc 115: 2382–2389). The intensities of all four line pairs belonging to these hf couplings are diminished in D2O. A novel model is presented and on the basis of the two largest hfc's distances between the manganese ions and the exchangeable protons are deduced. The interpretation of the ENDOR data indicates that these hf couplings might arise from water which is directly ligated to the manganese of the water oxidizing complex in redox state S2.Abbreviations cw continuous wave - ENDOR electron nuclear double resonance - EPR electron paramagnetic resonance - hf hyperfine - hfc hyperfine coupling - MLS multiline signal - PS II Photosystem II - rf radio frequency - WOC water oxidizing complex  相似文献   

4.
The EPR characteristics of oxygen evolving particles prepared from Phormidium laminosum are described. These particles are enriched in Photosystem II allowing EPR investigation of signals which were previously small or masked by those from Photosystem I in other preparations. EPR signals from a Signal II species and high potential cytochrome b-559 appear as they are photooxidised at cryogenic temperatures by Photosystem II. The Signal II species is a donor close to the Photosystem II reaction centre and may represent part of the charge accumulation system of water oxidation. An EPR signal from an iron-sulphur centre which may represent an unidentified component of photosynthetic electron transport is also described.The properties of the oxygen evolving particles show that the preparation is superior to chloroplasts or unfractionated algal membranes for the study of Photosystem II with a functional water oxidation system.  相似文献   

5.
W F Beck  G W Brudvig 《Biochemistry》1986,25(21):6479-6486
The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0 degrees C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
《BBA》1986,851(3):424-430
EPR signals from components functioning on the electron donor side of Photosystem II (PS II) have been monitored in PS II membranes isolated from spinach chloroplasts after treatment with trypsin at pH 7.5 and pH 6.0. The following information has been obtained. (1) The multiline manganese signal, the g = 4.1 signal and Signal IIslow are lost with trypsin treatment at pH 7.5, but not at pH 6.0. (2) At pH 7.5 the multiline S2 signal and the g = 4.1 signal are lost with approximately the same dependency on the incubation time with trypsin. At pH 6.0 trypsin treatment is known to block electron transfer between QA and QB (the first and the second quinone electron acceptors, respectively) allowing only a single turnover to occur. Under these conditions both the g = 4.1 signal and the multiline signal are induced by illumination at 200 K and their amplitudes are almost the same as in untreated samples. These results are interpreted as indicating that the g = 4.1 signal arises from a side path donor or from S2 itself rather than a carrier functioning between the S states and the reaction center as previously suggested. (3) Cytochrome b-559 is converted to its oxidized low-potential form by trypsin treatment at both values of pH. At pH 6.0 the S-state turnover still occurs indicating that the presence of reduced high-potential cytochrome b-559 is not necessary for this process.  相似文献   

7.
The parallel-mode electron paramagnetic resonance (EPR) spectrum of the S(1) state of the oxygen-evolving complex (OEC) shows a multiline signal centered around g=12, indicating an integer spin system. The series of [Mn(2)(2-OHsalpn)(2)] complexes were structurally characterized in four oxidation levels (Mn(II)(2), Mn(II)Mn(III), Mn(III)(2), and Mn(III)Mn(IV)). By using bulk electrolysis, the [Mn(III)Mn(IV)(2-OHsalpn)(2)(OH)] is oxidized to a species that contains Mn(IV) oxidation state as detected by X-ray absorption near edge spectroscopy (XANES) and that can be formulated as Mn(IV)(4) tetramer. The parallel-mode EPR spectrum of this multinuclear Mn(IV)(4) complex shows 18 well-resolved hyperfine lines center around g=11 with an average hyperfine splitting of 36 G. This EPR spectrum is very similar to that found in the S(1) state of the OEC. This is the first synthetic manganese model complex that shows an S(1)-like multiline spectrum in parallel-mode EPR.  相似文献   

8.
Electron paramagnetic resonance (EPR) spectroscopy and O2 evolution assays were performed on photosystem II (PSII) membranes which had been treated with 1 M CaCl2 to release the 17, 23 and 33 kilodalton (kDa) extrinsic polypeptides. Manganese was not released from PSII membranes by this treatment as long as a high concentration of chloride was maintained. We have quantitated the EPR signals of the several electron donors and acceptors of PSII that are photooxidized or reduced in a single stable charge separation over the temperature range of 77 to 240 K. The behavior of the samples was qualitatively similar to that observed in samples depleted of only the 17 and 23 kDa polypeptides (de Paula et al. (1986) Biochemistry25, 6487–6494). In both cases, the S2 state multiline EPR signal was observed in high yield and its formation required bound Ca2+. The lineshape of the S2 state multiline EPR signal and the magnetic properties of the manganese site were virtually identical to those of untreated PSII membranes. These results suggest that the structure of the manganese site is unaffected by removal of the 33 kDa polypeptide. Nevertheless, in samples lacking the 33 kDa polypeptide a stable charge separation could only be produced in about one half of the reaction centers below 160 K, in contrast to the result obtained in untreated or 17 and 23 kDa polypeptide-depleted PSII membranes. This suggests that one function of the 33 kDa polypeptide is to stabilize conformations of PSII that are active in secondary electron transfer events.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EGTA- ethylene glycol bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid - EPR- electron paramagnetic resonance - HSB- high salt buffer - HSCaB- high salt Ca2+ buffer - kDa- kilodalton - MES- 2-(N-morpholino)ethanesulfonic acid - P680- primary electron donor in PSII - PaGE- polyacrylamide gel electrophoresis - PSII- Photosystem II - QA- primary quinone electron acceptor in PSII - RB- resuspension buffer - TMPD- N,N,N,N-tetramethyl-p- phenylenediamine - Tris- tris(hydroxymethyl)aminomethane - TX100- Triton X-100 - Z- endogenous electron donor to P680+  相似文献   

9.
Teutloff C  Kessen S  Kern J  Zouni A  Bittl R 《FEBS letters》2006,580(15):3605-3609
The multiline signal of the S(2) state in Photosystem II was measured both in frozen-solution and single-crystal preparations from the cyanobacterium Thermosynechococcus elongatus. The frozen-solution EPR spectrum shows a gaussian-like line shape without any resolution of Mn hyperfine couplings. This line shape can be understood on the basis of the single-crystal spectra, where a strong orientation dependence of partially resolved hyperfine structures appears. Simulation of the frozen-solution spectrum on the basis of Mn hyperfine couplings taken from published pulse-ENDOR data yields a fully rhombic g-matrix for the multiline signal with principal components 1.997, 1.970, and 1.965. The resulting isotropic g-value g(iso)=1.977 is surprisingly small compared to other manganese complexes containing manganese ions in the formal oxidation states three and four.  相似文献   

10.
Electron paramagnetic resonance (EPR) measurements were performed on photosystem II (PSII) membranes that were treated with 2 M NaCl to release the 17- and 23-kilodalton (kDa) polypeptides. By using 75 microM 3-(3,4-dichlorophenyl)-1,1-dimethylurea to limit the photosystem II samples to one stable charge separation in the temperature range of 77-273 K, we have quantitated the EPR signals of the several electron donors and acceptors of photosystem II. It was found that removal of the 17- and 23-kDa polypeptides caused low potential cytochrome b559 to become fully oxidized during the course of dark adaptation. Following illumination at 77-130 K, one chlorophyll molecule per reaction center was oxidized. Between 130 and 200 K, both a chlorophyll molecule and the S1 state were photooxidized and, together, accounted for one oxidation per reaction center. Above 200 K, the chlorophyll radical was unstable. Oxidation of the S1 state gave rise to the S2-state multiline EPR signal, which arises from the Mn site of the O2-evolving center. The yield of the S2-state multiline EPR signal in NaCl-washed PSII membranes was as high as 93% of the control, untreated PSII membranes, provided that both Ca2+ and Cl- were bound. Furthermore, the 55Mn nuclear hyperfine structure of the S2-state multiline EPR signal was unaltered upon depletion of the 17- and 23-kDa polypeptides. In NaCl-washed PSII samples where Ca2+ and/or Cl- were removed, however, the intensity of the S2-state multiline EPR signal decreased in parallel with the fraction of PSII lacking bound Ca2+ and Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Electron transfer in photosystem II at cryogenic temperatures   总被引:4,自引:0,他引:4  
The photochemistry in photosystem II of spinach has been characterized by electron paramagnetic resonance (EPR) spectroscopy in the temperature range of 77-235 K, and the yields of the photooxidized species have been determined by integration of their EPR signals. In samples treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a single stable charge separation occurred throughout the temperature range studied as reflected by the constant yield of the Fe(II)-QA-EPR signal. Three distinct electron donation pathways were observed, however. Below 100 K, one molecule of cytochrome b559 was photooxidized per reaction center. Between 100 and 200 K, cytochrome b559 and the S1 state competed for electron donation to P680+. Photooxidation of the S1 state occurred via two intermediates: the g = 4.1 EPR signal species first reported by Casey and Sauer [Casey, J. L., & Sauer, K. (1984) Biochim. Biophys. Acta 767, 21-28] was photooxidized between 100 and 160 K, and upon being warmed to 200 K in the dark, this EPR signal yielded the multiline EPR signal associated with the S2-state. Only the S1 state donated electrons to P680+ at 200 K or above, giving rise to the light-induced S2-state multiline EPR signal. These results demonstrate that the maximum S2-state multiline EPR signal accounts for 100% of the reaction center concentration. In samples where electron donation from cytochrome b559 was prevented by chemical oxidation, illumination at 77 K produced a radical, probably a chlorophyll cation, which accounted for 95% of the reaction center concentration. This electron donor competed with the S1 state for electron donation to P680+ below 100 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at both Mn nuclei. The features that distinguish the multiline from the EPR spectra of model manganese dimer complexes (additional width of the spectrum (195 mT), additional peaks (22), internal "superhyperfine" structure) are plausibly explained assuming an unusual ligand geometry at both Mn nuclei, giving rise to normally forbidden transitions from quadrupole interactions as well as hyperfine anisotropy. The fitted parameters indicate that the hyperfine and quadrupole interactions arise from Mn ions in low symmetry environments, corresponding approximately to the removal of one ligand from an octahedral geometry in both cases. For a quadrupole interaction of the magnitude indicated here to be present, the MnIII ion must be 5-coordinate and the MnIV 5-coordinate or possibly have a sixth, weakly bound ligand. The hyperfine parameters indicate a quasi-axial anisotropy at MnIII, which while consistent with Jahn-Teller distortion as expected for a d4 ion, corresponds here to the unpaired spin being in the ligand deficient, z direction of the molecular reference axis. The fitted parameters for MnIV are very unusual, showing a high degree of anisotropy not expected in a d3 ion. This degree of anisotropy could be qualitatively accounted for by a histidine ligand providing pi backbonding into the metal dxy orbital, together with a weakly bound or absent ligand in the x direction.  相似文献   

13.
C Ma  B A Barry 《Biophysical journal》1996,71(4):1961-1972
Photosystem II contains two well-characterized tyrosine radicals, D(.) and Z(.). Z is an electron carrier between the primary chlorophyll donor and the manganese catalytic site and is essential for enzymatic function. On the other hand, D forms a stable radical with no known role in oxygen evolution. D(.) and Z(.) give rise to similar, but not identical, room temperature electron paramagnetic resonance (EPR) signals, which can be distinguished by their decay kinetics. A third room temperature EPR signal has also been observed in site-directed mutants in which a nonredox active amino acid is substituted at the D or Z site. This four-line EPR signal has been shown to have a tyrosine origin by isotopic labeling (Boerner and Barry, 1994, J. Biol. Chem. 269:134-137), but such an EPR signal has never before been observed from a tyrosyl radical. The radical giving rise to this third unique signal has been named M+. Here we provide kinetic evidence that this signal arises from a third redox active tyrosine, distinct from tyrosine D and Z, in the photosystem II reaction center. Isotopic labeling and EPR spectroscopy provide evidence that M is a covalently modified tyrosine.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy is one of the major techniques used to analyse the structure and function of the water oxidising complex (WOC) in Photosystem II. The discovery of an EPR signal from the S0 state has opened the way for new experiments, aiming to characterise the S0 state and elucidate the differences between the different S states. We present a review of the biochemical and biophysical characterisation of the S0 state multiline signal that has evolved since its discovery, and compare these results to previous and recent data from the S2 multiline signal. We also present some new data from the S2 state reached on the second turnover of the enzyme.  相似文献   

15.
The EPR characteristics of oxygen evolving particles prepared from Phormidium laminosum are described. These particles are enriched in Photosystem II allowing EPR investigation of signals which were previously small or masked by those from Photosystem I in other preparations. EPR signals from a Signal II species and high potential cytochrome beta-559 appear as they are photooxidised at cryogenic temperatures by Photosystem II. The Signal II species is a donor close to the Photosystem II reaction centre and may represent part of the charge accumulation system of water oxidation. An EPR signal from an iron-sulphur centre which may represent an unidentified component of photosynthetic electron transport is also described. The properties of the oxygen evolving particles show that the preparation is superior to chloroplasts or unfractionated alga membranes for the study of Photosystem II with a functional water oxidation system.  相似文献   

16.
R Damoder  G C Dismukes 《FEBS letters》1984,174(1):157-161
The pH dependence of oxygen evolution rates, 2,6-dichlorophenolindophenol (DCIP) reduction rates and the intensity of the multiline manganese EPR signal associated with the S2K ok state has been studied using oxygen-evolving spinach (PS) II particles. The oxygen evolution and DCIP reduction rates are found to be very sensitive to pH, with the maximal rates occurring at pH 6.5-7.0. Both the rate and yield of the S2 multiline manganese EPR signal intensity, produced by single flash excitation at room temperature or by continuous illumination at 200 K, are found to be independent of pH, indicating that no proton is released from this manganese site during the S1----S2 electron transfer. These results agree with those from other laboratories showing no proton release on this transition, but using techniques monitoring other species.  相似文献   

17.
Interaction of the water oxidising manganese complex of photosystem II with the aqueous environment has been investigated using electron paramagnetic resonance spectroscopy and electron spin echo envelope modulation spectroscopy to detect interaction of [2H]methanol with the complex in the S2 state. The experiments show that the classical S2 multiline signal is associated with a manganese environment which is not exposed to the aqueous medium. An electron paramagnetic resonance spectroscopy signal, also induced by 200 K illumination, showing 2H modulation by methanol in the medium and a modified multiline electron paramagnetic resonance spectroscopy signal formed in parallel to it, are suggested to be associated with a second manganese environment exposed to the medium.  相似文献   

18.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

19.
In spinach photosystem II (PSII) membranes, the tetranuclear manganese cluster of the oxygen-evolving complex (OEC) can be reduced by incubation with nitric oxide at -30 degrees C to a state which is characterized by an Mn(2)(II, III) EPR multiline signal [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587]. This state was recently assigned to the S(-)(2) state of the OEC [Schansker, G., Goussias, C., Petrouleas, V., and Rutherford, A. W. (2002) Biochemistry 41, 3057-3064]. On the basis of EPR spectroscopy and flash-induced oxygen evolution patterns, we show that a similar reduction process takes place in PSII samples of the thermophilic cyanobacterium Synechococcus elongatus at both -30 and 0 degrees C. An EPR multiline signal, very similar but not identical to that of the S(-)(2) state in spinach, was obtained with monomeric and dimeric PSII core complexes from S. elongatus only after incubation at -30 degrees C. The assignment of this EPR multiline signal to the S(-)(2) state is corroborated by measurements of flash-induced oxygen evolution patterns and detailed fits using extended Kok models. The small reproducible shifts of several low-field peak positions of the S(-)(2) EPR multiline signal in S. elongatus compared to spinach suggest that slight differences in the coordination geometry and/or the ligands of the manganese cluster exist between thermophilic cyanobacteria and higher plants.  相似文献   

20.
In order to model the individual electron transfer steps from the manganese cluster to the photooxidized sensitizer P680+ in Photosystem II (PS II) in green plants, the supramolecular complex 4 has been synthesized. In this complex, a ruthenium(II) tris-bipyridine type photosensitizer has been linked to a manganese(II) dimer via a substituted L-tyrosine, which bridges the manganese ions. The trinuclear complex 4 was characterized by electron paramagnetic resonance (EPR) and electrospray ionization mass spectrometry (ESI-MS). The excited state lifetime of the ruthenium tris-bipyridine moiety in 4 was found to be about 110 ns in acetonitrile. Using flash photolysis in the presence of an electron acceptor (methylviologen), it was demonstrated that in the supramolecular complex 4 an electron was transferred from the excited state of the ruthenium tris-bipyridine moiety to methylviologen, forming a methylviologen radical and a ruthenium(III) tris-bipyridine moiety. Next, the Ru(III) species retrieved the electron from the manganese(II/II) dimer in an intramolecular electron transfer reaction with a rate constant kET > 1.0 x 10(7) s(-1), generating a manganese(II/III) oxidation state and regenerating the ruthenium(II) photosensitizer. This is the first example of intramolecular electron transfer in a supramolecular complex, in which a manganese dimer is covalently linked to a photosensitizer via a tyrosine unit, in a process which mimics the electron transfer on the donor side of PS II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号