首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

2.
The transmembrane electropotential of microsomal vesicles from pea internode segments, monitored by equilibrium distribution of the permeant anion SCN?, is strongly hyperpolarized when ATP is present in the incubation medium.The stimulation of SCN? uptake by ATP is rather specific with respect to the other nucleoside di- and triphosphates tested: ADP, GTP, CTP and UTP. ATP-stimulated SCN? uptake is strongly inhibited by ATPase inhibitors such as p-chloromercuribenzenesulphonate and N,N-dicyclohexylcarbodiimide and by 2.5% toluene/ethanol (1 : 4, v/v), the latter being a treatment which makes the vesicles permeable. On the contrary, oligomycin is almost ineffective in influencing ATP-induced SCN? uptake. The proton conductor carbonyl cyanide p-trifluoromethoxyphenylhydrazone strongly inhibits ATP-stimulated SCN? uptake. The effect of ATP on SCN? uptake depends on the pH of the medium, the maximum being reached at about pH 7.0.These data support the view that microsomal fractions from pea internodes contain membrane vesicles endowed with a membrane-bound ATPase coupling ATP hydrolysis to electrogenic transport of ions, probably H+.  相似文献   

3.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

4.
Harmaline, a known inhibitor of the (Na+ + K+)-ATPase in cell membranes, inhibited 50% of the 22Na efflux from barnacle muscle fibres at an extracellular concentration of 2.4 mM. Injected harmaline inhibited 50% of the efflux at an estimated intracellular concentration of about 8 mM · kg?1, assuming complete equilibration with no binding. Total fibre harmaline was measured in separate fibres by ultraviolet spectrophotometry. Fibres in 3 mM harmaline saline accumulated harmaline with a half-time of 17 min and a final total fibre concentration of 6–12 mM · kg?1. In harmaline-free saline this accumulated harmaline was lost exponentially with a half-time of 35 min; injected harmaline was lost exponentially from fibres with a half-time of 50 min. It is proposed that harmaline crosses the fibre membrane as the uncharged base and that its apparent accumulation against a concentration gradient is mainly due to intracellular binding with an additional contribution from a transmembrane pH gradient. It is concluded that, in fibres exposed to harmaline saline, the intracellular concentration can reach a sufficiently high value, as judged from the results of the injection experiments, to inhibit Na+ efflux at an interior-facing site on the fibre membrane. In contrast, harmaline appears to inhibit the Na+-dependent uptake of l-glutamate at an extracellular site.  相似文献   

5.
A technique currently used for isolation of brush border membranes from renal and intestinal epithelium that involves vigorous tissue homogenization and sedimentation of non-luminal membranes in the presence of Mg2+ has been adapted to rat liver. Liver plasma membranes so prepared consisted almost exclusively of vesicles by electron microscopy, showed some contamination with endoplasmic reticulum and minimal contamination with mitochondria or Golgi by marker enzymes, were highly enriched in alkaline phosphatase, Mg2+-ATPase, and 5′-nucleotidase activity compared with homogenate, and showed little enrichment in (Na+,K+)-ATPase. Comparison of this enzymatic profile with cytochemical studies localizing (Na+,K+)-ATPase and alkaline phosphatase to the sinusoidal/lateral and canalicular membranes, respectively, suggested that these membranes were predominantly of canalicular origin. They had a lower (Na+ + K+)-ATPase specific activity, lower lipid content, and higher cholesterol to phospholipid molar ratio than a conventional plasma membrane preparation believed to be enriched in canaliculi. Moreover, it was possible to measure movement of d-[3H]glucose into an osmotically sensitive space bounded by these membrane vesicles.  相似文献   

6.
A Na+-specific and Na+-stimulated active α-aminoisobutyric acid transport system was reconstituted from plasma membranes isolated from mouse fibroblast BALB/c 3T3 cells transformed by simian virus 40. The plasma membranes were treated with dimethylmaleic anhydride and then extracted with 2% cholate. The cholate-solubilized supernatant proteins were combined with exogenous phospholipids and eluted through a Sephadex G-50 column. This yielded reconstituted vesicles which in the presence of Na+ could actively transport α-aminoisobutyric acid as shown by the transient accumulation above the equilibrium level (overshoot). The overshoot was not obtained with other monovalent cations such as K+, Li+, and choline+. The electrochemical effect of the lipophilic anion, SCN?, led to greater α-aminoisobutyric acid uptake as compared to that observed with Cl? or SO42?. The Na+-stimulated transport of a-aminoisobutyric acid was a saturable process with an apparent Km of 2 mm. Studies of the inhibition of α-aminoisobutyric acid transport by other amino acids showed that methylaminoisobutyric acid [specifically transported by A system (alanine preferring)]had a pronounced inhibitory effect on a-aminoisobutyric acid uptake in contrast to the slight inhibitory effect produced by phenylalanine [primarily transported by L system (leucine preferring)]. The results show that the reconstituted vesicles, prepared from partially purified membrane proteins and exogenous phospholipids, regained the same important transport properties of native membrane vesicles, i.e., Na+-specific and Na+-stimulated concentrative α-aminoisobutyric acid uptake.  相似文献   

7.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3′,5′-cyclic nucleotide phosphodiesterase, and (Na++K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3′,5′-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500–4000Å), which do not form vesicles.  相似文献   

8.
l-Glutamic acid (l-Glu) and other excitatory amino acids and amino acid analogs enhanced [35S]thiocyanate (SCN) uptake in isolated-resealed synaptic membrane vesicles. The SCN uptake was used as a measure of membrane depolarization to evaluate the characteristics of functional excitatory amino acid receptors in the synaptic membranes.N-Methyl-d-aspartate (NMDA) andl-Glu produced additive effects on SCN accumulation indicating the presence of distinctl-Glu and NMDA receptors. On the other hand, kainic acid (KA) andl-Glu shared either common receptor sites or ion channels. The effects of antagonists on NMDA,l-Glu, and KA stimulation of SCN influx were consistent with previously reported electrophysiologic observations in intact neurons.  相似文献   

9.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

10.
Intestinal brush border vesicles of a Mediterranean sea fish (Dicentrarchus labrax) were prepared using the Ca2+-sedimentation method. The transport of glucose, glycine and 2-aminoisobutyric acid is energized by an Na+ gradient (out > in). In addition, amino acid uptake requires Cl? in the extravesicular medium (2-aminoisobutyric acid more than glycine). This Na+- and Cl?-dependent uptake is electrogenic, since it can be stimulated by negative charges inside the vesicles. The specific Cl? requirement of glycine and 2-aminoisobutyric acid transport is markedly influenced by pH, a change from 6.5 to 8.4 reducing the role played by Cl?. In the presence of Cl?, the Km of 2-aminoisobutyric acid uptake is reduced and its Vmax is enhanced. Cl? affects also a non-saturable Na+-dependent component of this amino acid uptake. Amino acid transport is also increased by intravesicular Cl? (2-aminoisobutyric acid less than glycine). This effect is more concerned with glucose uptake, which can be then multiplied by 2.3. A concentration gradient (in > out) as well as the presence of Na+ in the incubation medium seems to enter into this requirement. This intravesicular Cl? effect is not influenced by pH between 6.5 and 8.4.  相似文献   

11.
Membrane vesicles prepared from E. coli B strain 29–78 require Na+ for the accumulation of glutamate. Respiratory-driven transport of glutamate but not lysine is sensitive to the ionophore monensin. An artificially-imposed sodium gradient and/or membrane potential drives glutamate uptake. These results suggest that glutamate is accumulated via a Na+/glutamate symport.  相似文献   

12.
In the presence of an Na+- or a K+-gradient (outside > inside), l-phenylalanine uptake exhibited an overshoot phenomenon indicating active transport. The amplitudes of the overshoots were increased by increasing either Na+ or K+ concentrations in the incubation media, indicating that binding alone cannot account for the K+ effect. The K+-induced overshoot is not due to the presence of a membrane potential alone, as a gradient of choline chloride failed to produce it. Li+ could also substitute for Na+ though less potent than Na+ in inducing an overshoot. Uptake of l-leucine also showed Na+- and K+-effects and l-leucine and l-alanine could inhibit the Na+- and K+-overshoots obtained with phenylalanine. These results lead us to postulate the presence of a carrier for neutral amino acids dependent on monovalent cation with higher affinity for Na+ in mouse intestine. The Na+- and K+-driven active transport of l-phenylalanine were shown to be dependent on the presence of a membrane potential, as short-circuiting the membrane with FCCP reduced the amplitude of the overshoots seen with both ions. However, substitution of Cl? by more lipophilic anions (NO3?, SCN?) produced an inhibition of uptake. A preliminary analysis of the interrelations between Na+ and K+ for l-phenylalanine uptake showed complex interactions which can be best explained by mutual competition for a common carrier at both sides of the membrane. These results suggest the presence of a new transport system or a variant of an ASC-type system for l-phenylalanine (and neutral amino acids) in the mouse intestine. However, our studies do not rule out the possible involvement of more than one system for neutral amino acid uptake.  相似文献   

13.
Membrane vesicles from a red mutant of Halobacteriumhalobium R1 accumulate protons when illuminated causing the pH of the suspension to rise. Sodium is extruded from the vesicles and a membrane potential is formed. This potential and the proton uptake are abolished by valinomycin if K+ is present. In contrast, Na+-efflux is uninhibited by valinomycin even though no membrane potential is detectable and H+ influx does not occur. Bis (hexafluoracetonyl)acetone (1799) stimulates proton uptake but does not abolish membrane potential. We propose that a light-dependent sodium pump is present. Passive proton uptake occurs in response to the electrical gradient created by this light-driven Na+ pump in contrast to the active proton, and passive Na+ flux that occurs in response to the light-driven proton pump described in vesicles of the parent strain of H.halobium R1.  相似文献   

14.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

15.
The Na+ channel activity (tetrodotoxin sensitive 22Na+ flux induced by veratridine and/or anemone toxin II) was studied in two fractions of brain cell plasma membranes, named A and B, isolated by the method of Gray and Whittaker ((1962) J. Anat. 96, 79–87) from rats 5, 10, 30 and 60 days old. The 22Na+ flux was measured in membrane vesicles formed by the isolated membranes, in the absence of drugs (control), in the presence of veratridine, and in the presence of veratridine plus tetrodotoxin. Fraction A consists primarily of neuronal and glial membranes in rats of 5 and 10 days of age, while in the older rats this fraction becomes enriched in myelin. In Fraction A of 5-day-old and 10-day-old rats, veratridine (25 μM) increases the 22Na+ flux 2.4- and 1.6-fold, respectively, and the increment continues to diminish with age, until it becomes negligible in the 60-day-old rats. Fraction B consists of synaptosomes and membrane vesicles, and at the four ages studied veratridine (25 μM) causes an increment of the 22Na+ flux of about 2.5-fold. Fractions A and B from 10-day-old rats, and Fraction B from 60-day-old rats, which are sensitive to veratridine, also respond to anemone toxin II. When veratridine is used in presence of anemone toxin II (0.5 μM), the K0.5 for veratridine is diminished and the maximum 22Na+ flux is increased. The increments of 22Na+ flux caused by veratridine and/or anemone toxin II in Fractions A and B are blocked by tetrodotoxin (K0.5 approx. 5 nM). Fraction A from 60-day-old rats could be subfractionated by osmotic shock and sucrose gradient centrifugation to obtain three subfractions, two of which are enriched in axolemma and display Na+ chennel activity. The other subfraction is enriched in myelin and shows no Na+ channel actiivty. The plasma membrane preparations from young rats (up to 10 days) are devoid of myelin and are useful for studies of Na+ channel activity.  相似文献   

16.
The coprodeum is a very efficient Na+-retaining epithelium. Coprodeum from birds on a high Na+ diet has virtually no ion transport, while an Amiloride-sensitive Na+ absorption of 10–12 μ equiv·cm?2·h?1 is induced in the coprodeal epithelium from birds on a low Na+ diet. Both measurements of the Na+ influx and Na+-diffusion potentials across the luminal cell membrane have revealed a selective opening of this membrane to Na+ in birds on a low Na+ diet. Freeze-fracture P faces of the luminal membrane in coprodea taken from birds on a low Na+ diet have rod-shaped particles, 100 × 240 A?, in more than 20% of the principal cells. Rod-shaped particles appear in less than 1% of these cells in coprodea from high Na+-diet birds. Thus a low Na+ diet induces rod-shaped particles in the luminal cell membrane of the hen coprodeum. These new particles may function as Na+-channels mediating the increased Na+-influx across the apical cell membrane.  相似文献   

17.
Frozen aqueous suspensions of partially purified membrane-bound renal (Na+ + K+)-ATPase have been irradiated at –135°C with high-energy electrons. (Na+ + K+)-ATPase and K+-phosphatase activities are inactivated exponentially with apparent target sizes of 184 ± 4 kDa and 125 ± 3 kDa, respectively. These values are significantly lower then found previously from irradiation of lyophilized membranes. After reconstitution of irradiated (Na+ + K+)-ATPase into phospholipid vesicles the following transport functions have been measured and target sizes calculated from the exponential inactivation curves: ATP-dependent Na+?K+ exchange, 201 ± 4 kDa; (ATP + Pi)-activated Rb+?Rb+ exchange, 206 ± 7 kDa and ATP-independent Rb+?Rb+ exchange, 117 ± 4 kDa. The apparent size of the α-chain, judged by disappearance of Coomassie stain on SDS-gels, lies between 115 and 141 kDa. That for the β-glycoprotein, though clearly smaller, could not be estimated. We draw the following conclusions: (1) The simplest interpretation of the results is that the minimal functional unit for (Na+ + K+)-ATPase is αβ. (2) The inactivation target size for (Na+ + K+)-dependent ATP hydrolysis is the same as for ATP-dependent pumping of Na+ and K+. (3) The target sizes, for K+-phosphatase (125 kDa) and ATP-independent Rb+?Rb+ exchange (117 kDa) are indistinguishable from that of the α-chain itself, suggesting that cation binding sites and transport pathways, and the p-nitrophenyl phosphate binding site are located exclusively on the α-chain. (4) ATP-dependent activities appear to depend on the integrity of an αβ complex.  相似文献   

18.
Stationary current voltage characteristics and the action potential of single myelinated nerve fibres were measured to examine the effect of n-alkanols (methanol to octanol) on the electrophysiological function of the axon membrane. K+-depolarized membranes show alkanol-dependent shifts of VTr, the membrane transition voltage, whereas in veratridine-depolarized membranes such VTr-shifts are not observed. In the latter case, n-alkanols reduce both the stationary Na+ current and the conductivity step between the high- and low-ohmic conductivity state of the membrane. Action potential amplitude, however, is less affected by the alkanols as is the stationary Na+ current. The results are compared with the alkanol-dependent changes of the thermotropic phase transition in phospholipid bilayers.  相似文献   

19.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

20.
Permeability properties of reconstituted rabbit skeletal muscle sarcoplasmic reticulum vesicles were characterized by measuring efflux rates of [3H]inulin, [3H]choline+, 86Rb+, and 22Na+, as well as membrane potential changes using the voltage-sensitive probe, 3,3′-dipentyl-2,2′-oxacarbocyanine. Native vesicles were dissociated with deoxycholate and were reconstituted by dialysis. Energized Ca2+ accumulation was partially restored. About 12 of the reconstituted vesicles were found to be ‘leaky’, i.e., permeable to choline+ or Tris+ but not to inulin. The remaining reconstituted vesicles were ‘sealed’, i.e., impermeable to choline+, Tris+ and inulin. Sealed reconstituted vesicles could be further subdivided according to their K+, Na+ permeability. About 12, previously designated Type I, were readily permeable to K+ and Na+, indicating the presence of the K+, Na+ channel of sarcoplasmic reticulum. The remaining sealed vesicles (Type II) formed a permeability barrier to K+ and Na+, suggesting that they lacked the K+, Na+ channel. These studies show that the K+, Na+ channel of sarcoplasmic reticulum can be solubilized with detergent and reconstituted with retention of activity. Furthermore, our results suggest that part or all of the decreased Ca2+-loading efficiency of reconstituted vesicles may be due to the presence of a significant fraction of leaky vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号