首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turnover of chlorophyll a (chl a) was investigated in the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle using a new method based on the incorporation of 14C into chl a. The alga was maintained in its exponential growth phase under continuous light; 14C was supplied as bicarbonate. The time course of label accumulation into the tetrapyrrole ring and the phytol side chain was determined for time periods equivalent to 1–2 cell doublings. The labeling kinetics of the tetrapyrrole ring and the phytol side chain were described satisfactorily by a simple precursor-pigment model with two free parameters, the precursor turnover rate and the pigment turnover rate, both having dimensions of time?1. The model was fit to the experimental data to determine the values of these two free parameters. The turnover rates of the tetrapyrrole ring and the phytol side chain were not significantly different, ranging from 0.01 to 0.1 per day. These rates are equivalent to turnover times ranging from days to weeks. Growth rate-normalized turnover rates did not vary with irradiance (7.5–825 μE · m?2· s?1). The precursor turnover rates of the tetrapyrrole ring and the phytol side chain differed by an order of magnitude. These results indicate that chl a is not degraded significantly in cultures of T. weissflogii grown under continuous light. Neither irradiance nor growth rate affected growth rate-normalized chlorophyll turnover rates. Our results are inconsistent with the hypothesis that steady-state cellular concentrations of chl a are maintained by a dynamic equilibrium between rates of synthesis and degradation.  相似文献   

2.
Fatty acid spin labels containing nitroxide groups at different positions in the fatty acid chain have been incorporated into lipid vesicles. Changes in esr parameters of the spin labels in the presence in the membrane of phytol, propionic acid phytol ester or chlorophyll a and the kinetics of chlorophyll a mediated photodestruction of the spin labels suggest a localization of the macrocyclic ring of the chlorophyll molecule in the polar head group region of the membrane.  相似文献   

3.
Chlorophyllide b and four chemically different chlorophyll b specieis, chlorophyllide b esterified with geranylgeraniol, dihydrogeranylgeraniol, tetrahydrogeranylgeraniol and phytol have been detected in addition to the same derivatives of chlorophyll a in the greening cotyledons of cucumber. These esters could be separated and determined by high-performance liquid chromatography. The results suggest that chlorophyll b phytol is formed from the esterification of chlorophyllide b and geranylgeraniol followed by three hydrogenations of the alcohol moiety, as in the case of chlorophyll a and protochlorophyll phytol formation  相似文献   

4.
Using time-course, natural-light incubations, we assessed the rate of carbon uptake at a range of light intensities, the effect of supplemental additions of nitrogen (as NH4+ or urea) on light and dark carbon uptake, and the rates of uptake of NH4+ and urea by phytoplankton from Vineyard Sound, Massachusetts from February through August 1982. During the winter, photoinhibition was severe, becoming manifested shortly after the start of an incubation, whereas during the summer, there was little to no evidence of photoinhibition during the first several hours after the start of an incubation. At light levels which were neither photoinhibiting nor light limiting, rates of carbon uptake normalized per liter were high and approximately equal during winter and summer (22–23 μg C·l?1 · h?1), and low during spring (<10 μgC·l?1· h?1). In contrast, on a chlorophyll a basis, rates of carbon fixation were as high during spring (15–20μg C·μg Chl a?1·h?1), when concentrations of chlorophyll a were at the yearly minimum (<0.5 μg · l?1) as during the summer, when chlorophyll a concentrations were substantially higher (0.8–1.3 μg · l?1). Highest rates of NH4+ and urea uptake were observed during summer, and at no time of the year was there evidence for severe nitrogen deficiency, although moderate nitrogen nutritional stress was apparent during the summer months.  相似文献   

5.
The interaction of chlorophylls a and b with electrochemically prepared superoxide anion was studied in aprotic solvent. It was found that O2?·causes the deprotonation at carbon C-10 of ring V and production of chlorophyll enolate ions. The intermediate anions undergo rapid oxidation into corresponding chlorins. Pyrochlorophyll a, which lacks the C-10 carboxymethyl group, did not show the transformation. It is suggested that more strong free radical oxidants (e.g., HO2·, or RO2·) are capable of abstracting the hydrogen atom at C-10. The possible significance of free radical deprotonation and oxidation in chlorophyll allomerization is discussed.  相似文献   

6.
Anacystis nidulans was grown in white light of two different intensities, 7 and 50 W ·m?2. The in vivo pigmentations of the two cultures were compared. The ratio phycocyanin/chlorophyll a was 0.96 for cells grown at 7 W · m?2 and 0.37 for cells grown at 50 W · m?2. Phycocyanin-free photosynthetic lamellae (PSI-particles) were prepared, using French press treatment and fractionated centrifugation. Algae grown in the irradiance of 50 W · m?2 showed a chlorophyll a/P700 ratio of 260, while algae grown at 7 W · m?2 had a value of 140. Corresponding PSI-particles showed values of 122 and 109 respectively. Light-induced absorption difference spectra measured between 400–450nm indicated different ratios between cytochrome f and P700 in the two algal cultures. Enhancement studies of photosynthetic oxygen evolution were carried out. When a background beam of 691 nm was superimposed upon a signal beam of 625 nm, good enhancement was observed for both cultures. With the wavelengths 675 and 691 nm together a pronounced enhancement could be detected only in algae grown at the higher light level. Absorption spectra recorded on whole cells at 77°K revealed a small shift of the main red chlorophyll a absorption peak caused by light intensity. It is proposed that the reduction of the phycocyanin/chlorophyll a ratio in high light-grown cells is accompanied by an increased energy distribution by chlorophyll a into PSII.  相似文献   

7.
The enzymatic degradation of chlorophyll a and the formation of chlorophyllide a, phaeophytin a, and phaeophorbide a were detected in vitro in several species of marine phytoplankton. Loss of phytol and Mg2+ were found to be catalysed by chlorophyllase and a magnesium-releasing enzyme, respectively. The activities of the two enzymes could be distinguished from each other by inhibiting with Mg2+ and/or p-chloromercurobenzoate. Both enzymes are activated by cell disintegration. Degradation products were not detected spectrophotometrically in vivo. Additionally, in some species, chlorophyll a was degraded to products which do not absorb visible light.  相似文献   

8.
In order to investigate the relative importance of the hydrophobic and headgroup interactions of chlorophyll a in phospholipid bilayers, we have carried out differential scanning calorimetry (DSC) and deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) experiments on the multilamellar system of chlorophyll a in dimyristoylphosphatidylcholine (DMPC). Compared to the phytol chain of chlorophyll and the previously reported distearoylphosphatidylcholine (DSPC), the acyl chains of DMPC are shorter in length by three and four carbons, respectively. A lowering in the phase-transition temperature was observed for the DMPC multilayers in the presence of chlorophyll a in the DSC thermograms and in the 31P chemical shift anisotropy measurements. These results, together with data on hydrophobic interactions as measured by 2H-NMR and on headgroup interactions as evidenced from 31P-NMR, suggest a phase diagram for the chlorophyll a/DMPC system in which phase separation readily occurs between a chlorophyll-rich compound phase and a chlorophyll-poor phospholipid phase. Compound formation appears to be important in the stabilization of chlorophyll a in bilayers with shorter chains.  相似文献   

9.
The effects of diurnal variations in light intensity on the biomass characteristics and the efficiency of daily growth of Skeletonema costatum (Grev.) Cleve were evaluated. The relative importance of changes in carbon specific rates of respiration and organic release to the efficiency of growth was determined. Light intensity was either constant at 130 μE · m?2 · s?1 during the light period or fluctuated throughout the light period from 500 to 10 μE · m?2 · s?1 at rates of either 1 or 12 cycles · day?1. Total daily light was equivalent for all light regimes at 5.6 E · m?2 · day?1.Daily rates of growth remained comparable at ≈ 1 · day?1 under constant and fluctuating light regimes. Cell size as daily mean carbon · cell?1, nitrogen · cell?1 and cellular volume was decreased under diurnally varying light whereas daily mean chlorophyll a · cell?1 was unaffected.Rates of respiration, organic release and gross production were elevated several fold under diurnally varying light in comparison to constant light. Net growth efficiency decreased from 0.69 under constant light to values of 0.50 and 0.38 under 1 and 12 cycles · day?1, respectively. Decreased efficiency of growth under diurnally fluctuating light resulted mostly from greater respiratory activity while organic release remained < 10% of gross production. Increased rates of gross production reflected enhancement in the efficiency of carbon fixation with fluctuating light.  相似文献   

10.
We have examined the molecular and photosynthetic responses of a planktonic cyanobacterium to shifts in light intensity over periods up to one generation (7 h). Synechococcus sp. PCC 7942 possesses two functionally distinct forms of the D1 protein, D1∶1 and D1∶2. Photosystem II (PSII) centers containing D1∶1 are less efficient and more susceptible to photoinhibition than are centers containing D 1∶2. Under 50 μmol photons· m?2·s?1, PSII centers contain D1∶1, but upon shifts to higher light (200 to 1000 μmol photons·m?2·s?1), D1∶1 is rapidly replaced by D 1∶2, with the rate of interchange dependent on the magnitude of the light shift. This interchange is readily reversed when cells are returned to 50 μmol photons·m?2·s?1. If, however, incubation under 200 μmol photons·m?2·s?1 is extended, D1∶1 content recovers and by 3 h after the light shift D1∶1 once again predominates. Oxygen evolution and chlorophyll (Chl) fluorescence measurements spanning the light shift and D1 interchanges showed an initial inhibition of photosynthesis at 200 μmol photons·m?2·s?1, which correlates with a proportional loss of total D1 protein and a cessation of growth. This was followed by recovery in photosynthesis and growth as the maximum level of D 1∶2 is reached after 2 h at 200 μmol photons·m?2·s?1. Thereafter, photosynthesis steadily declines with the loss of D1∶2 and the return of the less-efficient D1∶1. During the D1∶1/D1∶2 interchanges, no significant change occurs in the level of phycocyanin (PC) and Chl a, nor of the phycobilisome rod linkers. Nevertheless, the initial PC/Chl a ratio strongly influences the magnitude of photo inhibition and recovery during the light shifts. In Synechococcus sp. PCC 7942, the PC/Chl a ratio responds only slowly to light intensity or quality, while the rapid but transient interchange between D1∶1 and D 1∶2 modulates PSII activity to limit damage upon exposure to excess light.  相似文献   

11.
Weekly sampling was carried out in Saanich Inlet, British Columbia throughout the winter of 1975–1976. The surface water column was characterized by exposure to low solar radiation energy (<150 g cal·cm?2 · day?1), slight stratification with occasional vertical mixing, and abundant algal nutrients. Phytoplankton were mostly distributed above 5 m in the water column, with a fairly low biomass averaging <1 μgchla·1?1. Dominant phytoplankton organisms were nanoflagellates occasionally accompanied by dinoflagellates as the second dominant. Centric diatoms, which were dominant in the blooms, were always present but less than a few percentage of the total phytoplankton biomass. Daily photosynthetic productivity was exclusively limited by available radiant energy. Low solar radiation and occasional mixing of the surface zone prohibited the centric diatoms from becoming dominant.  相似文献   

12.
《FEBS letters》1985,188(1):68-72
A photochemically active reaction centre complex has been isolated from photosystem II preparations of spinach chloroplasts by Triton X-100 solubilisation and sucrose gradient fractionation. Electrophoresis of the complex revealed 5 bands indicating polypeptides of apparent molecular masses of 47, 43, 33, 30 and 10 kDa. Lipid analyses showed that polar, as well as neutral, lipids are associated with the complex. For approx. 40 chlorophyll a molecules there were 3.4 plastoquinone-9, 3.3 pheophytin a, 2.9 β-carotene, 29.3 monogalactosyldiacylglycerol and 12.4 sulphoquinovosyldiacylglycerol molecules. These results suggest that this photosystem II reaction centre complex, which most likely represents a minimum photochemically active unit, is a lipoprotein complex. A striking feature of the associated polar lipids is their very low degree of unsaturation.  相似文献   

13.
Liu Z L  Chen J F  Zhang T  Chen Z Y  Zhang H S 《农业工程》2007,27(12):4953-4962
Investigations on chlorophyll a and primary productivity were carried out in the Chukchi Sea and its northern Chukchi Plateau during the 2nd Chinese National Arctic Research Expedition in the summer of 2003. The results showed that chlorophyll a concentrations were 0.009–30.390 μg/dm3 at the surveyed waters; the surface chlorophyll a concentrations were 0.050–4.644 μg/dm3 and the average value was (0.875±0.981) μg/dm3 in the surveyed area. In the Chukchi Sea Shelf, chlorophyll a concentrations at the depth from 10 m to bottom were higher than that in the surface water, and the concentrations were lower at the depth below 75 m in the Chukchi Plateau. Chlorophyll a concentrations descended in 3 sequential samplings on Transect R, with average values of (2.564±1.496) μg/dm3, (1.329±0.882) μg/dm3 and (0.965±0.623) μg/dm3, respectively. The potential primary productivity ((2.305± 1.493) mgC/(m3·h)) in the Chukchi Sea was higher than that ((0.527±0.374) mgC/(m3·h)) in the Chukchi Plateau. The results of the size-fractionated chlorophyll a and primary productivity showed that microplankton accounted for the majority of the total chlorophyll a (63.13%) and primary productivity (65.16%) at the survey stations. The contributions of the nanoplankton and picoplankton to the total chlorophyll a and primary productivity were roughly the same.  相似文献   

14.
1. This study characterizes chlorophyll a-H2O adducts in vitro in order to establish their generic relationship to the recently proposed [15, 18–20, 31] primary molecular adduct in photosynthesis. The effects of water titration and temperature on the absorption, fluorescence, excitation, and redox properties of the various in vitro chlorophyll a aggregate species are investigated.2. From fluorescence measurements, we conclude that the driest chlorophyll a sample contains an equimolar amount of water. This conclusion is consistent with earlier experimental work [2, 3, 14, 17, 31], and clarifies the origin of the controversial [15] Katz model [14] of chlorophyll a-H2O interactions.3. With increasing water concentration or as the temperature is lowered below room temperature, the A-663 monohydrate chlorophyll a · H2O (species absorbing at 663 nm) is favored at the expense of the A-678 anhydrous aggregate according to the equilibrium 2H2O + chlorophyll a2ai 2 chlorophyll a · H2O. Under excess water conditions, A-663 is converted to A-743 (chlorophyll a · 2H2O)n.4. On slow sample cooling to T ? 200 °K, we observe the growth of A-700 at the expense of A-663. There is a direct correspondence between the increasing (decreasing) absorption by A-700 (A-663) and increasing (decreasing) fluorescence at 720 nm (664 nm).5. It is concluded that A-700 is most probably the dimer participating in the equilibrium 2 chlorophyll a · H2O ai (chlorophyll a · H2O)2. The A-700 band consists of two exciton components (separated by ≈ 280 cm?1) that are interpretable in terms of the dimeric origin of A-700.6. The deconvoluted A-700 absorption spectrum and the excitation spectrum of the 720 nm fluorescence are compared with the light-minus-dark spectra of P-700.7. It is found that A-700 is reversibly bleached by I2 (E0 = 0.54 V). The significance of this observation is discussed in terms of the redox properties of monomeric chlorophyll a and P-700.  相似文献   

15.
Photosynthetic pigments and their derivatives were measured in sediments in the fjordic Loch Eil and the Firth of Lome, Scotland, between November 1975 and November 1976. After acetone extraction from the top 10 mm of sediment cores, pigments were crudely separated, by fluorescence change on acidification, into (chlorophyll a + chlorophyllide a) and phaeopigments. The greatest pigment concentrations (mean 73 μg · g sediment dry wt?1) were found in the most reducing sediments which also had a high average proportion (23%) of chlorophyll. The least mean pigment concentration (23 μg · g?1) and proportion of chlorophyll (17%) were found in the most oxidizing sediments in the Firth of Lorne where there was a clear seasonal cycle, with a peak in sediment pigment concentration and chlorophyll proportion in May and June, just after the planktonic spring increase. The Loch Eil stations showed a less clear or no seasonal cycle; the station most affected by organic input was the most variable from month to month. It was concluded that redox status was the most obvious control of sediment pigment content, whereas the effect of sedimentation of phytoplankton was complex.  相似文献   

16.
Penetration of 1-alkanols into monolayers of hydrophobic polypeptides, poly(ε-benzyloxycarbonyl-l-lysine) and poly(ε-benzyloxycarbonyl-dl-lysine), was compared with their adsorption on the air/water interface in the absence of monolayers. The polypeptide prepared from l-lysine is generally considered to be in the α-helical form whereas dl-copolymer polypeptide contains random-coiled portions due to the structural incompatibility between the two isomers. The free energy of adsorption of 1-alkanols on the air/water interface at dilute concentrations was ?0.68 kcal·mol?1 per methylene group and 0.15 kcal·mol?1 for the hydroxyl group at 25°C. In the close-packed state, the surface area occupied by each molecule of 1-alkanols of varying carbon chain-lengths showed nearly a constant value of about 27.2 Å2, indicating perpendicular orientation of the alkanol molecules at the interface. About 75% of the water surface was covered by 1-butanol in this close-packed state. The mode of adsorption of 1-alkanols on the vacant air/water interface followed the Gibbs surface excess while the mode on the polypeptide membranes followed the Langmuir adsorption isotherm, indicating that the latter is characterized by the presence of a finite number of binding sites. The free energies of adsorption of 1-alkanols on the l-polymer monolayers were more negative than those on the vacant air/water interface and less negative than those on the dl-copolymer monolayers. Thus, the affinity of 1-alkanols to the interface was in the order of vacant air/water interface <l-polymer <dl-copolymer. The difference between the air/water interface and l-polymer was about 0.54 kcal·mol?1 and that between l-polymer and dl-copolymer was 0.17 kcal·mol?1 at 25°C: the adsorption of 1-alkanols to the dl-copolymer was favored compared to the l-polymer. The polar moieties of the backbone of the dl-copolymer may be exposed to the aqueous phase at the disordered portion. Dipole interaction between this portion and 1-alkanol molecules may account for the enhanced adsorption of the alkanols to the dl-copolymer.  相似文献   

17.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

18.
Oyster reefs are dense concentrations of filter-feeding animals in estuarine ecosystems. A flow-through plastic tunnel is a feasible method of determining significant changes in material concentrations in tidal waters passing over an oyster reef. The oyster reef reduces the amplitude of the particulate organic carbon and chlorophyll a signals while increasing the amplitude, of the ammonia signal. The observations suggest that oyster reefs have one of the highest reported release rates of ammonia (1680–7250 μg at.·m?2·h?1), and thus are probably important in material cycles in marsh-estuarine ecosystems. The magnitude of particulate organic carbon removal by the oyster reef is many times greater than that expected from biofiltration alone, suggesting that removal due to physical factors may be important.  相似文献   

19.
Adult male C57BL mice were exposed to 75, 150, 300 or 450 R X-rays with or without pre-treatment with Adeturon (S-2-aminoethyl-isothiuronium bromide hydrobromide (AET) adenosine triphosphate, 500 mg/kg b.w.). Twelve weeks later, primary spermatocytes were examined cytologically at diakinesis-metaphase I for persisting chromosomal translocations, namely multivalents in the form of rings or chains.For the dose range studied, regression analysis indicated that the data were best fitted to the equation Y = aD + bD2 with coefficients for translocated-cell and translocations-per-cell yields, respectively, a = 1.57·10?2 and 1.59·10?2 and b = ?2.29·10?5 and ?2.09·10?5, for Adeturon protected irradiated animals vs.a = 1.80·10?2 and 2.05·10?2, and b = ?0.94·10?5 and ?1.19·10?5, in non-protected irradiated animals.Adeturon protection of heritable structures in mouse germ cells showed a dose reduction factor of about 2.  相似文献   

20.
The development of a phytoplankton bloom was studied by placing a drogue in a patch of cold upwelled water and following the water mass for 4–5 days. Chaetoceros compressus Laud and Skeletonemacostatum (Grev.) Cleve dominated the bloom which reached its peak in 3 days. In this period chlorophyll a concentrations increased by 19.2 mg · m?3 in the euphotic zone while the concomitant decrease in nitrate concentration was 18.7 mg-at. NO3-N · m?3. There was an overall increase in the concentration of protein with the highest concentration (412.9mg · m?3) being measured just prior to the peak of the bloom. Carbohydrate concentrations increased rapidly during the day but decreased at night. The pattern of carbon-14 assimilation at the 50% light intensity was characterised by high activity in the polysaccharide fraction as the bloom developed, but at the peak of the bloom a greater percentage of the label was found in the ethanol-soluble fraction. The percent incorporation into protein was greater at night than during the day. These physiological changes are related to the growth pattern of the bloom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号