首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth).Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO3? > Br? > Cl? > I? > acetate ≈ isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an ‘uncoupling’ of ATP hydrolysis from H+ accumulation.Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN? to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN? is a very  相似文献   

2.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

3.
Cauliflower mitochondria do not have a 2,4-dinitrophenol-stimulated ATPase unless they are permitted a brief period of respiration (respiratory priming) or are preincubated for an extensive period with ATP (self-priming). Both priming processes are dependent on Mg2+, and are collapsed by 2,4-dinitrophenol in the absence of ATP. Corn mitochondria, which have an endogenous DNP-ATPase, contain significantly more Mg2+ and adenine nucleotides than cauliflower mitochondria. Primed cauliflower mitochondria have Mg2+ content comparable to corn mitochondria. Cauliflower mitochondria will actively accumulate adenine nucleotides through atractyloside-insensitive sites. It appears that priming consists of creating an electrochemical potential which is needed for accumulation of Mg2+ or adenine nucleotides or for charge compensation of the ATP4?ADP3-? exchange.  相似文献   

4.
1. The effect of gossypol in the presence of K+ or Mg2+, or both, was studied on ATPase activity and respiration of rat liver mitochondria.2. Respiration was uncoupled in the presence of gossypol, Mg2+, and K+, whereas in the presence of gossypol and Mg2+ a partial inhibition was observed.3. Gossypol stimulated ATPase activity in the presence of K+ or Mg2+, but maximal activity was observed when both cations were in the incubation medium.4. Stimulation of ATPase activity in the presence of Mg2+ was dose related.5. EDTA reverted the stimulation produced by gossypol on ATPase activity.6. Gossypol had no effect on the ATPase activity of submitochondrial particles, which suggests an indirect action of gossypol on the enzyme.7. Mitochondrial membrane potential showed a higher collapse in the presence of gossypol and 1mM MgCl2.8. The observed effects of gossypol could be explained by the collapse of the mitochondrial membrane potential.  相似文献   

5.
The addition of 5 · 10?5 M or less of dicyclohexylcarbodiimide to Mycoplasma mycoides var. Capri preferentially influences K+ influx rather than efflux and reduces by 30–40% the activity of the membrane-bound Mg2+-ATPase. Adding valinomycin to metabolizing cells does not markedly affect K+ distribution but induces a rapid and complete loss of intracellular K+ in non-metabolizing cells. Uncoupling agents such as dinitrophenol, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, dissipate the K+ concentration gradient only when combined with valinomycin.Variations in the merocyanine fluorescence intensity indicate that a transmembrane electrical potential (Δψ) is generated on cell energization. This Δψ, not affected by valinomycin or uncouplers when used alone, is collapsed by a mixture of both. No change in fluorescence intensity can be detected when glucose is added to dicyclohexylcarbodiimide treated organisms.These experiments suggest that the membrane-bound Mg-ATPase activity controls K+ distribution in these organisms through the generation of a transmembrane electrical potential difference.  相似文献   

6.
With chromatophores ofRhodospirillum rubrum, valinomycin inhibited electron transport in the presence or absence of K+. NH4Cl had no effect on photophosphorylation but uncoupled with valinomycin present. ATPase activity was stimulated by NH4Cl plus valinomycin but not by either alone. K+ partially reversed the inhibition of phosphorylation and the stimulation of ATPase by valinomycin plus NH4Cl.With chloroplasts, valinomycin inhibited coupled but not basal electron transport. The inhibition was only partially reversed by uncouplers. Valinomycin stimulated the light-activated Mg2+-dependent ATPase similar to several uncouplers such as quinacrine, methylamine, and S-13. In addition, valinomycin inhibited delayed light emission and stimulated the H+/e ratio. These contrasting activities in chloroplasts are not easily explained.Contribution number 389 of the Charles F. Kettering Research Laboratory.  相似文献   

7.
The efflux of adenine nucleotides from three human tumor mitochondria has been investigated with mitochondria prelabeled with radioactive ATP. Uncouplers induce a large efflux of adenine nucleotides from mitochondria from human hepatoma and oat cell carcinoma while efflux from astrocytoma mitochondria is less. This efflux does not require exchangeable anions, i.e., adenine nucleotides or pyrophosphate, in the extramitochondrial medium, and is not sensitive to atractyloside. The efflux is more extensive with dinitrophenol and CCCP than with valinomycin-K+, and may account for the differential effects of the two types of uncouplers on uncoupler-stimulated ATPase of tumor mitochondria previously reported by us. Dinitrophenol and CCCP do not elicit any efflux of adenine nucleotides from normal liver mitochondria. Efflux of orthophosphate from tumor mitochondria is also greater with dinitrophenol and CCCP; however, the more interesting finding is that the concentration of orthophosphate in these mitochondria is unusually high, i.e., 10-40-times greater than the intramitochondrial phosphate concentration of liver mitochondria. Atractyloside sensitive transport of ATP and ADP in human tumor mitochondria has also been determined. Vmax values for both ADP and ATP transport are lower than those obtained with liver mitochondria, especially with ADP transport. ATP transport in tumor mitochondria is not affected by CCCP in contrast to the 4-5-fold stimulation observed in liver mitochondria.  相似文献   

8.
Previous studies showed that stimulation of mouse mitochondrial ATPase activity of tumor cells, fetal liver, and adult brain by the uncoupler 2,4-dinitrophenol was markedly suppressed during incubation of the mitochondria with the uncoupler (J.-I. Hayashi et al., 1980, Biochem. Biophys. Res. Commun.92, 261–267). The present work showed the reason for this suppression. More than half the endogenous Mg2+ leaked from mitochondria of all tumor cells tested, and of fetal liver and adult brain during incubation with the uncoupler, while only about 30% of the endogenous Mg2+ leaked from mitochondria of other normal tissues. The effect of the uncoupler on Mg2+ leakage from liver mitochondria changed from the fetal to the adult type within about 30 min after birth. In hypotonic medium, normal liver mitochondria also lost more than half their total Mg2+ and concomitantly stimulation of their ATPase activity by uncoupler was considerably reduced. Exogenously added Mg2+ could reverse this reduced effect of the uncoupler on ATPase activity of mitochondria from normal tissues and tumor cells. These results show that the endogenous Mg2+ content of mitochondria directly affects the stimulation by uncoupler of ATPase activity of mitochondria from both normal tissues and tumor cells. Thus, mitochondria of all tumor cells tested, and of fetal liver and adult brain are leaky to Mg2+ during incubation with uncoupler and as a result of the leakage, the stimulatory effect of the uncoupler on their ATPase activity is greatly reduced.  相似文献   

9.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2++Mg2+ dependent ATPase activities (about 9 μmol/h per mg protein). The Na++K++Mg2+ dependent ATPase activity was 3.2 μmol/h per mg (±1.0, S.D., n=3) when microvesicles were prepared according to (1) and 1.5 μmol/h per mg (±1.0, S.D., n=3) when prepared according to (2).Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2++Mg2+ dependent ATPase from any of the preparations.As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy.The Ca2++Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na++K++Mg2+ ATPase was decreased.Na++K++Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na++K++Mg2+ dependent ATPase activity in the eluted coated microvescile fraction.It was concluded that Ca2++Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

10.
Perturbation of cellular K+ homeostasis is a common motif in apoptosis but it is unknown whether a decrease in intracellular K+ alone is sufficient to replicate apoptotic hallmarks. We investigated, which mode of cell death is induced by decreasing the intracellular K+ concentration using valinomycin, a highly K+-selective ionophore. Valinomycin treatment induced mitochondrial swelling and minor nuclear changes in cell lines (BV-2, C6, HEK 293), and in primary mouse microglia and astrocytes. In the microglial cell line BV-2, we identified and quantified three phenotypes in valinomycin-exposed cells. The first and most prevalent phenotype (62 ± 2%) was characterized by swollen mitochondria and no chromatin condensation, and the second (25 ± 3%) by swollen mitochondria and slight chromatin condensation. Only the third phenotype (11 ± 4%) fulfilled criteria of apoptosis by having normal-sized mitochondria and strongly condensed chromatin. Valinomycin-induced swelling of mitochondria was not altered by the adenine nucleotide translocase inhibitor bongkrekic acid (BA), the pan caspase inhibitor Z-VAD-FMK, changing extracellular K+ or Cl concentrations, or the membrane-permeable Ca2+ chelator BAPTA-AM. Only co-exposure of cells to valinomycin and the Ca2+ ionophore ionomycin in high K+ Cl-free extracellular solution suppressed mitochondrial swelling. Ionomycin alone caused shrinkage of mitochondria. Additionally, valinomycin promoted autophagic processes, which were further enhanced by preincubation with BA or with Z-VAD-FMK. Valinomycin-dependent chromatin condensation was inhibited by BA, Z-VAD-FMK, BAPTA-AM, and ionomycin. Our findings demonstrate that mitochondrial swelling and autophagy are common features of valinomycin-exposed cells. Accordingly, valinomycin promotes an autophagic cell death mode, but not apoptosis.  相似文献   

11.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

12.
Mitochondria were prepared from various kinds of normal tissues and tumor cells of mice, and their ATPase activities were measured in the presence of an uncoupler. The ATPase activities of all mitochondria were stimulated by the uncoupler when it was added to the mitochondrial suspension just before or after addition of ATP. However, when mitochondria were preincubated with the uncoupler for four minutes or more before the addition of ATP, its stimulating effect on mitochondrial ATPase activities was greatly reduced in all tumor cells tested, but not in normal adult liver. Reduction of the stimulating effect of the uncoupler by preincubation with it was also observed with mitochondrial ATPase of brain and fetal liver. Thus this pattern of change in the effect of uncoupler on preincubation may be common to tumor mitochondria, but it is not specific to tumor mitochondria. The pattern of uncoupler stimulation observed in fetal liver changed rapidly to that of adult liver immediately after birth. Thus the difference between the two uncoupler stimulation patterns is probably not due to a difference in molecular species of mitochondrial ATPase.  相似文献   

13.
Na+, K+-ATPase activities of the membranes obtained from intact red cells that are exposed to ouabain, digoxin, and digitoxin are inhibited. The extent of inhibition of each enzyme sample can be found by the following two assays: 1) Activity is measured by the addition of enzyme to a buffered solution containing 2 mM ATP, 3 mM Mg2+, 1 mM EDTA, 100 mM Na+, and 25 mM K+. Since little regeneration of the inhibited enzyme occurs under these conditions, the measured activity is that of the partially inhibited enzyme. 2) Enzyme is preincubated for ten minutes in the same solution from which Mg2+ and K+ are omitted, and then assayed by the addition of Mg+ and K+. Since the inhibited enzyme is completely regenerated during the preincubation period, the activity measured here serves as a control for that determined in the first assay.  相似文献   

14.
Differential centrifugation of oxyntic cell homogenates yielded microsomal fractions which contained large amounts of mitochondrial membrane. The presence of marker enzymes (succinate dehydrogenase and cytochrome c oxidase) indicated that mitochondrial contamination of crude microsomes ranged from 20 to 60% in different preparations. A discontinuous sucrose density gradient procedure was developed for the routine preparation of purified oxyntic cell microsomes. A K+-stimulated, Mg2+-requiring ATPase was localized in these purified membranes and coincided with the presence of a K+-stimulated p-nitrophenylphosphatase. Na+ and ouabain had no effect on the K+ stimulation of the microsomal ATPase. The apparent activation constant for K+ was approximately 1 mM at pH 7.5, the optimal pH for stimulation.An anion-sensitive ATPase has been widely studied in gastric microsomal preparations. We found that the basal microsomal ATPase (i.e. without K+) and the mitochondrial ATPase were inhibited by SCN? and enhanced by HCO3?, however, the K+-stimulated component of the microsomal ATPase was virtually unaffected by these anions.  相似文献   

15.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

16.
Fluorescamine labeling of rat liver mitochondria enhances the ATPase activity. It reached maximum stimulation when mitochondria were treated with 30–34 nmol fluorescamine per mg of mitochondrial protein. This stimulation is inhibited by N,N′-dicyclohexylcarbodiimide. The maximum stimulation caused by labeling is the same as that obtained from uncoupler with optimum concentration. The chemiosmotic potential (ΔμH+) decreases as the labeling increased. However, ΔμH+ is not abolished completely even when ATPase activity reaches a maximum. The results suggest that primary amino groups may be involved in controlling mitochondrial ATPase activity.  相似文献   

17.
Between pH 4–10, basal ATPase activity, measured in the absence of mineral ions, was 10 to 100 times higher in the final cytoplasmic supernatant from potato tuber homogenates than in the membraneous fractions (purified plasmalemma, purified mitochondria and microsomes). The soluble ATPase was slightly inhibited, whereas the membrane-bound ATPases were all stimulated by Mg2+ ions. A further stimulation by Na+ or K+ ions was only observed in purified plasmalemma or mitochondria, at alkaline pH (7.5–9.5). At a fixed (Na++ K+) concentrations (80 mM), this last stimulation was much greater in purified mitochondria (350%) than in plasmalemma (33%); it also increased with (Na++ K+) concentrations up to 200 mM in mitochondria whereas, in plasmalemma, it was roughly constant for monovalent ion concentrations between 20 and 200 mM. General properties of the plasma membrane-bound ATPase have been determined, i.e. substrate specificity, activity variations with quantity of substrate, temperature, pH, etc. Divalent cations stimulated strongly the ATPase in the following order: Mn2+ > Mg2+ > Ca2+. The maximum ATP hydrolysis velocity for that part of ATPase activity which is strictly dependent on Mg2+ ions was 3.85 μmol × mg?1 protein × h?1. This plasma membrane ATPase was not sensitive to ouabaïn or to oligomycin.  相似文献   

18.
External treatment of human erythrocytes with the diazonium salt of sulfanilic acid does not inhibit the Mg2+-dependent ATPase but does markedly inhibit the Ca2+-stimulated ATPase activity. Inhibition of the (Na+ + K+)-dependent activity is dependent upon the concentration of diazonium salt used. Treatment of membrane fragments does not irreversibly inhibit the (Na+ + K+)-dependent ATPase even though the diazonium salt binds covalently to membrane components. However, the Mg2+-dependent and Ca2+-stimulated ATPase activities are irreversibly inhibited. ATP and Mg-ATP will completely protect the (Na+ + K+)-dependent ATPase when present during treatment of membrane fragments with the diazonium salt, but only Mg-ATP will protect the Mg2+-dependent ATPase from inhibition. The Ca2+-stimulated ATPase activity is not protected.  相似文献   

19.
The adenosine triphosphatase (ATPase) system in worker honey-bee brains showed an increased activity of 57 per cent in Na+K+ATPase and 63 per cent in Mg2+ATPase from adult emergence to 7 days post-emergence. Mg2+ATPase activity remained about the same throughout the remainder of adult life, while Na+K+ATPase remained the same until the sixth week, when a decline occurred. The percentage mortality of the bees exceeded 90 per cent at the time of decline of Na+K+ATPase. The in vitro inhibition of Mg2+ATPase and Na+K+ATPase by 10 μM DDT was between 40 and 50 per cent and about 20 per cent, respectively. A somewhat greater sensitivity to DDT was determined in brains of older honey-bees.  相似文献   

20.
The 2,4-dinitrophenol-stimulated ATPase activity and the 32P-ATP exchange reaction has been studied in rat liver mitochondria having less than 15 nmoles of K+ per milligram of protein. With 200 mm sucrose in the incubation media, the permeation of K+ and an oxidizable substrate is required for maximal stimulation of ATPase activity by 2,4-dinitrophenol. In these conditions, the 2,4-dinitrophenol-stimulated ATPase is inhibited by antimycin, acetate and mersalyl and depends to a certain extent on the rate of electron transport. The 32P-ATP exchange reaction of mitochondria with a low content of K+ also requires K+ permeation and is inhibited by antimycin, cyanide, 2,4-dinitrophenol, and acetate. The results suggest that the entrance of ATP into the mitochondria is compulsory linked to K+ uptake in a process that depends on a negative internal potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号