首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effect of inorganic slow channel blockers on the calcium paradox in the frog heart was examined. Addition of the divalent cations of manganese, cobalt, nickel, or barium during calcium depletion protected the frog heart against a calcium paradox. This protective effect was indicated by reduced protein release, maintenance of electrical activity, and recovery of mechanical activity during reperfusion. Tissue calcium determination results showed that in the control paradox in the absence of divalent cations, there is an efflux of calcium from myocardial cells during calcium depletion and a massive influx of calcium during the following reperfusion, leading to a calcium overload. Divalent cations protected frog myocardial cells, when present in the calcium-free perfusion medium, by reducing both calcium efflux during calcium depletion and the massive calcium influx during reperfusion. The effectiveness of the added divalent cations showed a strong dependence upon their ionic radius. The most potent inhibitors of the calcium paradox in the frog heart were the divalent cations having an ionic radius closer to the ionic radius of calcium. These results are discussed in terms of the possible mechanism involved in the protective effect of manganese, cobalt, nickel, and barium.  相似文献   

2.
Stimulated secretion of lysosomal enzymes by cells in culture   总被引:1,自引:0,他引:1  
F9 mouse teratocarcinoma and PyS-2 cells in culture incubated with monovalent cations in buffered sucrose solution (0.25 M) can secrete as much as 40% of their total lysosomal enzymes into the medium within 30 min. Longer incubation does not lead to further loss of enzyme, suggesting that only a certain fraction of lysosomes is capable of discharge. The simultaneous presence of sucrose and cation, each at the respective optimal concentrations of 0.25 and 0.15 M, is required for lysosomal discharge (i.e. twice isoosmolarity). The cells remain fully viable. Sodium ions are more effective than lithium and potassium ions, whereas amines and divalent cations are less effective. Other sugars including glucose can replace sucrose to varying extents. Secretion is accompanied by a rapid short-lived rise in the level of cAMP. Forskolin as well as agents that activate G protein such as cholera toxin, AlF4-, and vanadate ions also increase the rate of secretion. Sucrose-Na+ stimulation takes place independently of changes in influx or efflux of calcium ions or changes in the levels of extracellular or free intracellular calcium ions. Neomycin, an inhibitor of phospholipase C, has little effect on secretion. Our results suggest that the secretion observed is mediated by a cAMP-dependent mechanism involving G proteins. Calcium ions and phospholipase C appear to play little or no part in the activation process.  相似文献   

3.
We describe the effects of lanthanum on protein secretion, potassium efflux, calcium uptake and phosphatidylinositol turnover stimulated by cholinergic agonists in rat parotid glands. Carbachol increases in vitro calcium uptake, protein secretion and K+ efflux through muscarinic receptor; however it fails to stimulate protein discharge or K+ release in a incubation medium free of calcium. Lanthanum inhibits calcium uptake, protein secretion and K+ efflux induced by carbachol without impairing protein discharge stimulated by norepinephrine through the beta-adrenergic receptor. Norepinephrine, in the presence of calcium in the incubation medium, stimulates the K+ efflux through the alpha-adrenergic receptor: this effect is suppressed by lanthanum. These results emphasize the role of increased influx of calcium in the cellular phenomena controlled by muscarinic or alpha-adrenergic receptors. Carbachol increases phosphatidylinositol turnover in the absence of calcium in extracellular medium; indeed it is shown that carbachol increases the rate of phosphatidylinositol breakdown and that lanthanum impairs this cholinergic effects. From these data it is suggested that the interaction between cholinergic agonist and muscarinic receptor could induce a stimulation of 'phosphatidylinositol turnover' which could control the calcium influx according to the gradient through the plasmalemma membrane.  相似文献   

4.
Light scattering measurements were used to assess the effectsof selected divalent and monovalent cations on alginate aggregationin vitro. Alginate, formed with either strontium, calcium orcobalt was partially dissolved with sodium. Calcium-alginatewas also partially dissolved with two other monovalent cations,lithium and potassium. Phosphate, when added to a solution containingcalcium-alginate, scrubbed algin-ate-bound calcium as well asfree calcium in solution. These findings provide an explanationfor an alternative approach for breaking down cell wall alginate. Key words: Alginate aggregates, monovalent cations, divalent cations, light scattering  相似文献   

5.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

6.
An energy-dependent efflux system for potassium ions in yeast   总被引:3,自引:0,他引:3  
An efflux of potassium ions was demonstrated in mutants of yeast cells lacking a functional high affinity carrier system for monovalent cations. This efflux showed the following characteristics: (a) It was stimulated by the presence of a substrate, either glucose or ethanol. (b) It was stimulated by several cationic organic molecules, such as ethidium bromide, dihydrostreptomycin, diethylaminoethyldextran, and also by trivalent cations, such as Al3+ and lanthanides; this stimulation also depended on the presence of a substrate. (c) K+ efflux was decreased in yeast mutants with decreased ATPase activity, which generated a lower membrane potential. (d) Although the efflux appeared to be of an electrogenic nature, producing hyperpolarization of cells, it was accompanied by the efflux of phosphate, probably as an anion partially compensating for the large amount of cations leaving the cell. (e) K+ efflux was also accompanied by an uptake of protons. (f) The efflux appeared more clearly in cells grown in YPD medium, and not in more complex media nor in the same YPD medium if supplemented with Ca2+ or Mg2+. Efflux of monovalent cations produced by Tb3+ and organic cationic agents was also demonstrated in wild type strains. This efflux system appears to be, at least partially, electrogenic, but seems to be also an exchange system for protons and to function as a symport with phosphate; it may be involved in the regulation of the internal pH of the cell, and appears to be regulated by its link to the energetic status of the cell, probably through the membrane potential.  相似文献   

7.
Abstract— The effects of divalent cations on the stimulation of [3H]catechol formation in striatal slices induced by d-amphetamine was studied in order to determine the role of calcium in this action of amphetamine. In the absence of any divalent cations in the medium, amphetamine did not significantly stimulate [3H]catechol synthesis in striatal slices, but it produced a marked stimulation of synthesis when calcium (1.25 mm ) was added to the medium. In the presence of calcium (1.25 mm ), high concentrations of magnesium (15mm ), other divalent cations (2.5 mm ) such as barium, strontium, manganese and cobalt, as well as verapamil, inhibited the amphetamine-induced stimulation. When the slices were incubated in medium containing no divalent cations, the addition to the medium of either strontium, cobalt, zinc, or magnesium (2.5 mm ) could not support the amphetamine-induced stimulation of [3H]catechol synthesis, while the addition of barium resulted in a significant stimulation of synthesis. In contrast, the stimulation produced by amphetamine in the presence of manganese was comparable to that observed when calcium had been added to the medium. Since amphetamine did not alter the specific activity of [3H]tyrosine in the tissue in the presence of any of the divalent cations tested, the amphetamine-induced stimulation of [3H]catechol synthesis was probably due to an increase in tyrosine hydroxylase activity. Calcium and manganese were also able to support the stimulation of [3H]catechol synthesis in striatal slices induced by high potassium concentration. However, compared to the effects with amphetamine, manganese was much less effective than calcium in supporting the stimulation induced by high potassium concentration. These results show that specific divalent cations can support the stimulation of catechol synthesis induced by amphetamine in striatal slices, and suggest that the entry of these specific ions into cells, presumably dopamine neurons, is involved in this action.  相似文献   

8.
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: I(CRAC), Imin, Imax, and I(NS); 2) I(CRAC) channels are highly Ca2+-selective (P(Ca/Cs)>1000) and I(CRAC) single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity P(Ba/K)=20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (P(Ba/K)=4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) I(NS) channels are non-selective (P(Ba/K)=0.4) and display a single channel conductance of 5 pS; and 8) I(NS) channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.  相似文献   

9.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered.Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates.Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux were inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore.After cleavage of the 100 000 dalton ATPase to 50 000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

10.
The properties of low (LVA) and high (HVA) voltage-activated calcium currents were investigated in rat sensory neurons and a murine neuroblastoma cell line exposed to various concentrations of intra- or extracellular monovalent ([c+]i/o) and trivalent ([c3+]i/o) cations. In neurons, when [c+]i was changed from 150 to 20 mM, positive shifts of 18-28 mV were observed in activation curves of both LVA and HVA currents, as well as in LVA inactivation curves. Extracellularly, in divalent-free solutions, [c+]o of 20-50 mM produced medium (12-22 mV) negative shifts of the LVA channel properties. These data were used to estimate, by a "screening" model, a negative surface charge density around neuron's calcium channels of 1/1,000 and 1/1,325 eA-2 at the outside or inside face, respectively. In the presence of physiological concentrations of divalent cations, [c+]o of 20-60 mM caused smaller (4-11 mV) negative shifts of the activation and inactivation curves, which can be explained by assuming a partial neutralization of negative charges by divalent cations. By applying the above procedure to LVA channels of neuroblastoma cells, the ratio of extra- to intracellular surface charge density turned out to be more than tenfold higher than in neurons. Effects produced by [c3+]i/o were not in agreement with expectations based on screening or binding models.  相似文献   

11.
A23187 transports calcium rapidly into rat erythrocytes, apparently by an electroneutral exchange for intracellular magnesium and protons. When red cells are incubated in the absence of any added divalent cations, A23187 transports internal magnesium out of the cells, in exchange for extracellular protons. Magnesium uptake into erythrocytes is produced by A23187, providing the extracellular concentration of this cation exceeds intracellular levels, and the ionophore also transports strontium, but not barium, into red cells. A23187 produces a rapid and extensive loss of intracellular potassium from erythrocytes during uptake of calcium or strontium, but not magnesium. When red cells are incubated in the absence of any exogenous divalent cations, A23187 still produces a potassium efflux and this is inhibited completely by small amounts of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and restored by the addition of calcium in excess of the chelator. Although EDTA enhances the extent of magnesium release from erythrocytes incubated with A23187, it prevents the potassium efflux. Dipyridamole and 4-acetamid-4'-isothiocyano-stilbene-2,5'-disulfonic acid, which decrease chloride premeability of erythrocytes, inhibit the A23187-induced potassium loss from red cells. Rutamycin, peliomycin, venturicidin, and A23668B also inhibit potassium efflux from intact cells incubated with A23187, but this effect is not correlated with their abilities to inhibit various ATPases in red cell membrane preparations. It is concluded that A23187 does not transport potassium directly across the erythrocyte plasma membrane, but permits small amounts of endogenous calcium to interact with some membrane component to enhance potassium permeability of the cell.  相似文献   

12.
Net and radioactive calcium movements were studied in the rat uterus during stimulation with acetylcholine and high potassium solutions. High potassium did not affect the efflux of intracellular Ca45, but was able to release Ca45 from a small parallel Ca fraction which was believed to be located in the cell membranes. High potassium did markedly slow the influx of Ca45 and caused a net calcium efflux. Acetylcholine had no effect on calcium movements in polarized myometrium, but it increased the Ca45 influx in depolarized uteri. Ca45 taken up during contraction exchanged more slowly during subsequent efflux than Ca45 taken up at rest. The results were interpreted as supporting the hypothesis that myometrial contraction is induced by a release of calcium from the inside of the cell membrane and the endoplasmic reticulum, and relaxation follows the removal of ionic cytoplasmic calcium by these same structures.  相似文献   

13.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered. Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates. Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux wre inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore. After cleavage of the 100,000 dalton ATPase to 50,000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

14.
During incubation with vanadyl, Saccharomyces cerevisiae yeast cells were able to accumulate millimolar concentrations of this divalent cation within an intracellular compartment. The intracellular vanadyl ions were bound to low molecular weight substances. This was indicated by the isotropic nature of the electron paramagnetic resonance (EPR) spectra of the respective samples. Accumulation of intracellular vanadyl was dependent on presence of glucose during incubation. It could be inhibited by various di- and trivalent metal cations. Of these cations lanthanum displayed the strongest inhibitory action. If yeast cells were exposed to more than 50 microM vanadyl sulfate at a pH higher than 4.0, a potassium loss into the medium was detected. The magnitude of this potassium loss suggests a damage of the plasma membrane caused by vanadyl. Upon addition of vanadate to yeast cells surface-bound vanadyl was detectable after several minutes by EPR. This could be the consequence of extracellular reduction of vanadate to vanadyl. The reduction was followed by a slow accumulation of intracellular vanadium, which could be inhibited by lanthanum or phosphate. Therefore, permeation of vanadyl into the cells can be assumed as one mechanism of vanadium accumulation by yeast during incubation with vanadate.  相似文献   

15.
We examine how a variety of cationic channels discriminate between ions of differing charge. We construct models of the KcsA potassium channel, voltage gated sodium channel and L-type calcium channel, and show that they all conduct monovalent cations, but that only the calcium channel conducts divalent cations. In the KcsA and sodium channels divalent ions block the channel and prevent any further conduction. We demonstrate that in each case, this discrimination and some of the more complex conductance properties of the channels is a consequence of the electrostatic interaction of the ions with the charges in the channel protein. The KcsA and sodium channels bind divalent ions strongly enough that they cannot be displaced by other ions and thereby block the channel. On the other hand, the calcium channel binds them less strongly such that they can be destabilized by the repulsion of another incoming divalent ion, but not by the lesser repulsion from monovalent ions.  相似文献   

16.
Passive Ca2+ influx independent of ATP addition to the incubation medium, took place in plasma membrane vesicles isolated from rat liver. The rate of Ca2+ influx was found to depend on the concentration of added Ca2+, and on the incubation temperature, and was inhibited by La3+, Hg2+ and by p-chloromercuribenzoate. Influx was not blocked by calcium channel blockers, or affected by a range of uncouplers. Addition of the Ca2+ ionophore A23187 to vesicles that had taken up the ion induced a rapid efflux of Ca2+ especially when EGTA also was added to the incubation medium. A number of divalent cations inhibited Ca2+ influx. The vesicles could be frozen and stored overnight with little loss in activity. The kinetics of Ca2+ influx could be related to that which occurs in the unstimulated perfused rat liver. The data suggest that the plasma membrane vesicle preparation may be useful for further studies on the basal liver cell Ca2+ influx system in vitro.  相似文献   

17.
The primary effects of nystatin, a polyene antibiotic, on the yeast Saccharomyces cerevisiae were investigated. Though K+ leakage was observed shortly after the addition of nystatin, Ca2+ leakage was delayed 2–3 h after its application and it occurred only at an acidic pH and in the absence of K+, Na+ or Mg2+ from the medium. However, within 4 min after application nystatin induced a passive influx of Ca2+ into the cells even at a concentration of 1 μM in the medium. These results led to the conclusion that the primary membranal lesion induced by nystatin is not restricted to monovalent cations but is also manifested by increased permeability to Ca2+. The delayed leakage of Ca2+ is explained by the assumption that the bulk of cellular calcium is sequestered so that the concentration of free Ca2+ in the cytoplasm is very low. The sequestered calcium may be liberated 2–3 h after the addition of nystatin as a consequence of secondary damage to the cells such as intracellular acidification and loss of cations.  相似文献   

18.
We examine how a variety of cationic channels discriminate between ions of differing charge. We construct models of the KcsA potassium channel, voltage gated sodium channel and L-type calcium channel, and show that they all conduct monovalent cations, but that only the calcium channel conducts divalent cations. In the KcsA and sodium channels divalent ions block the channel and prevent any further conduction. We demonstrate that in each case, this discrimination and some of the more complex conductance properties of the channels is a consequence of the electrostatic interaction of the ions with the charges in the channel protein. The KcsA and sodium channels bind divalent ions strongly enough that they cannot be displaced by other ions and thereby block the channel. On the other hand, the calcium channel binds them less strongly such that they can be destabilized by the repulsion of another incoming divalent ion, but not by the lesser repulsion from monovalent ions.  相似文献   

19.
The shared transport system for uptake of L-cystine and L-lysine was examined in isolated rat renal brush-border membrane vesicles for the ionic requirements for activation of the system. No requirement for sodium was seen for either cystine or lysine influx. However, the efflux of lysine from the vesicle was stimulated by Na+. Therefore, the transport system appears to be asymmetric in its requirement for sodium. Two different divalent cations were used in the membrane isolations which resulted in different responses of cystine uptake to the electrogenic movement of K+ out of the vesicle. Membranes prepared by Mg-aggregation showed no stimulation of cystine influx by the imposition of a transient interior negative potential while vesicles prepared by Ca-aggregation did respond to electrogenic stimulation by an outwardly directed K-diffusion potential in the presence of valinomycin. Lysine influx was stimulated by electrogenic potassium efflux in both Mg-prepared and Ca-prepared membranes. No difference in sodium requirement for cystine influx was seen between the vesicles isolated by different cation-aggregation methods.  相似文献   

20.
Abstract: The effects of monovalent and divalent cations on binding of [3H]spiroperidol to dopamine receptors in rat corpus striatum were studied. Both monovalent and divalent cations as well as several chelating agents increase the number of [3H] spiroperidol binding sites. Manganese is most potent, enhancing binding at 1 μ m concentration, while magnesium and calcium are at least two orders of magnitude less potent and the monovalent cations sodium, potassium and lithium are still weaker. Divalent cations enhance the potency of dopaminergic agonists in competing for [3H]spiroperidol binding, an effect which appears to be independent of the ionic augmentation of [3H]spiroperidol binding. Divalent cations decrease both the association and dissociation rates of [3H]spiroperidol binding to dopamine receptor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号