首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid synthetase from goose uropygial gland was inactivated by treatment with pyridoxal 5′-phosphate. Malonyl-CoA and acetyl-CoA did not protect the enzyme whereas NADPH provided about 70% protection against this inactivation. 2′-Monophospho-ADP-ribose was nearly as effective as NADPH while 2′-AMP, 5′-AMP, ADP-ribose, and NADH were ineffective suggesting that pyridoxal 5′-phosphate modified a group that interacts with the 5′-pyrophosphoryl group of NADPH and that the 2′-phosphate is necessary for the binding of the coenzyme to the enzyme. Of the seven component activities catalyzed by fatty acid synthetase only the enoyl-CoA reductase activity was inhibited. Inactivation of both the overall activity and enoyl-CoA reductase of fatty acid synthetase by this compound was reversed by dialysis or dilution but not after reduction with NaBH4. The modified protein showed a characteristic Schiff base absorption (maximum at 425 nm) that disappeared on reduction with NaBH4 resulting in a new absorption spectrum with a maximum at 325 nm. After reduction the protein showed a fluorescence spectrum with a maximum at 394 nm. Reduction of pyridoxal phosphate-treated protein with NaB3H4 resulted in incorporation of 3H into the protein and paper chromatography of the acid hydrolysate of the modified protein showed only one fluorescent spot which was labeled and ninhydrin positive and had an Rf identical to that of authentic N6-pyridoxyllysine. When [4-3H]pyridoxal phosphate was used all of the 3H, incorporated into the protein, was found in pyridoxyllysine. All of these results strongly suggest that pyridoxal phosphate inhibited fatty acid synthetase by forming a Schiff base with the ?-amino group of lysine in the enoyl-CoA reductase domain of the enzyme. The number of lysine residues modified was estimated with [4-3H]pyridoxal-5′-phosphate/NaBH4 and by pyridoxal-5′-phosphate/NaB3H4. Scatchard analysis showed that modification of two lysine residues per subunit resulted in complete inactivation of the overall activity and enoyl-CoA reductase of fatty acid synthetase. NADPH prevented the inactivation of the enzyme by protecting one of these two lysine residues from modification. The present results are consistent with the hypothesis that each subunit of the enzyme contains an enoyl-CoA reductase domain in which a lysine residue, at or near the active site, interacts with NADPH.  相似文献   

2.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

3.
Beef-heart mitochondrial F1F0-ATP synthase contained six molecules of bound inorganic phosphate (Pi). This phosphate exchanged completely with exogenous 32Pi when the enzyme was exposed to 30% (v/v) dimethyl sulfoxide (DMSO) and then returned to a DMSO-free buffer (Beharry and Bragg 2001). Only two molecules were replaced by 32Pi when the enzyme was not pretreated with DMSO. These two molecules of 32Pi were not displaced from the enzyme by the treatment with 1 mM ATP. Similarly, two molecules of bound 32Pi remained on the DMSO-pretreated enzyme following addition of ATP, that is, four molecules of 32Pi were displaced by ATP. The ATP-resistant 32Pi was removed from the enzyme by pyrophosphate. It is proposed that these molecules of 32Pi are bound at an unfilled adenine nucleotide-binding noncatalytic site on the enzyme. Brief exposure of the enzyme loaded with two molecules of 32Pi to DMSO, followed by removal of the DMSO, resulted in the loss of the bound 32Pi and in the formation of two molecules of bound ATP from exogenous ADP. A third catalytic site on the enzyme was occupied by ATP, which could undergo a Pi ATP exchange reaction with bound Pi The presence of two catalytic sites containing bound Pi is consistent with the X-ray crystallographic structure of F1 (Bianchet, et al., 1998). Thus, five of the six molecules of bound Pi were accounted for. Three molecules of bound Pi were at catalytic sites and participated in ATP synthesis or Pi ATP exchange. Two other molecules of bound Pi were present at a noncatalytic adenine nucleotide-binding site. The location and role of the remaining molecule of bound Pi remains to be established. We were unable to demonstrate, using chemical modification of sulfhydryl groups by iodoacetic acid, any gross difference in the conformation of F1F0 in DMSO-containing compared with DMSO-free buffers.  相似文献   

4.
Inactivation of formate dehydrogenase by formaldehyde, pyridoxal and pyridoxal phosphate was studied. The effects of concentrations of the modifying agents, substrates, products and inhibitors on the extent of the enzyme inactivation were examined. A complete formate dehydrogenase inactivation by pyridoxal, pyridoxal, phosphate and formaldehyde is achieved by the blocking of 2, 5 and 13 lysine residues per enzyme subunit, respectively. The coenzymes do not protect formate dehydrogenase against inactivation. In the case of modification by pyridoxal and pyridoxal phosphate a complete maintenance of the enzyme activity and specific protection of one lysine residue per enzyme subunit is observed during formation of a binary formate-enzyme complex, or a ternary enzyme--NAD--azide complex. One lysine residue is supposed to be located at the formate-binding site of the formate dehydrogenase active center.  相似文献   

5.
The H4 and M4 isoenzymes of pig lactate dehydrogenase are both inactivated by reaction with pyridoxal 5′-phosphate. In the early stages, inactivation is largely reversible by the addition of lysine in excess, but may be made irreversible by reduction with borohydride. This indicates that modification of lysine residues probably causes the initial inactivation. Both isoenzymes also undergo a slower process of irreversible inactivation which becomes more evident with increasing concentrations of pyridoxal 5′-phosphate and higher temperature. Although coenzymes give only partial protection of enzyme activity, they nevertheless completely prevent irreversible inactivation. Neither pyruvate nor lactate alone gives any protection. With the M4 isoenzyme, complete protection against inactivation by pyridoxal 5′-phosphate may be achieved in ternary complexes, but no conditions have been found for complete protection of the H4 isoenzyme. In the course of irreversible inactivation of H4 lactate dehydrogenase, complete loss of activity can be correlated with the loss of approximately two free thiol groups per subunit. Present findings with regard to the importance of temperature and reagent concentration in determining the outcome of the chemical modification appear to resolve earlier controversy.  相似文献   

6.
A homogeneous preparation of glyoxylate synthetase from greening potato tubers was used to study the functional role of disulphide groups, lysine and tryptophan residues in enzyme catalysis. The formation of a thioisoindole derivative was demonstrated by spectral analysis of the reduced and o-phthalaldehyde-treated enzymes. o-Phthalaldehyde modification resulted in about a 25 % loss of tryptophan emission at 336 nm and the appearance of a 410-nm emission peak characteristic of a thioisoindole. Ferrous iron was capable of generating thiol groups and addition of substrate resulted in a faster disappearance of these thiols. The optimal time for maximum glyoxylate synthesis by glyoxylate synthetase paralleled the disappearance of these thiols. Involvement of lysine and tryptophan residues in the enzyme reaction was demonstrated by the inhibition of activity by pyridoxal 5′-phosphate and dimethyl(2-hydroxy 5-nitrobenzyl) sulphonium bromide (DMHNB), respectively. Pyridoxal phosphate strongly and reversibly inhibited glyoxylate synthetase, and substrate and metal ion provided significant protection against inhibition. The results suggest that the lysine residue may be at or near the active binding site. The lysyl residue formed a Schiff base with pyridoxal phosphate which was stabilised by NaBH4. Glyoxylate synthetase was also irreversibly inactivated by a tryptophan selective reagent, DMHNB, while substrate provided substantial protection against inactivation. Kinetic analysis and correlation of the spectral data at 410 nm indicated that complete inactivation by DMHNB resulted from the modification of 5 tryptophan residues/subunit, of which one was essential for activity. The available evidence suggests a possible concerted action of enzyme disulphides, ferrous iron, lysine and aromatic amino acid residues in the synthesis of glyoxylate by this enzyme.  相似文献   

7.
Rabbit muscle phosphofructokinase (PFK) is rapidly inactivated by a 2′,3′-dialdehyde derivative of adenosine triphosphate (dialdehyde-ATP). When allowed to react with 0.6 mm dialdehyde-ATP in 0.1 m borate buffer (pH 8.6) containing 0.2 mm EDTA and 0.5 mm dithiothreitol, PFK loses essentially all activity (99%) in 30 min. The modified PFK remains inactive following dialysis of the reaction mixture against sodium borate (pH 8.0) containing fructose diphosphate, EDTA, and dithiothreitol. Experiments with [14C]dialdehyde-ATP show that 99% inactivation of PFK corresponds to incorporation of 3 to 4 mol of the ATP analog per PFK protomer. The inactivation of PFK with dialdehyde reagent is not caused by dissociation of the 340,000 Mr, tetramer to the 170,000 Mr dimer, as determined by analytical ultracentrifugation. Adenosine diphosphate or ATP protect PFK from inactivation by dialdehyde-ATP at pH 8.6, but fructose 6-phosphate, cyclic 3′,5t-?adenosine monophosphate, or fructose diphosphate, which protect PFK from modification by pyridoxal phosphate, provide little protection from inactivation. Amino acid analyses of dialdehyde-inactivated PFK and of a control sample of the enzyme were compared following reaction of each with 2,4-dinitrofluorobenzene. The results show that three or four lysine residues per PFK protomer are modified by dialdehyde-ATP. Additional data indicate that these lysine residues react with dialdehyde-ATP to form dihydroxymorpholine-like adducts rather than Schiff bases.  相似文献   

8.
The amino reagent 2,4,6-trinitrobenzenesulfonate (TNBS) was found to inactivate mitochondrial F1-ATPase through covalent labeling, which was not reversed by dithiothreitol. The observed rate of inactivation was retarded by inorganic phosphate, but enhanced by prior labeling of F1 with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1). These observations are consistent with the presence of an essential amino group near the bound inorganic phosphate at the catalytic site of F1. A comparison of the observed protection of F1 from NBD-C1 and 5′-p-fluorosulfonyl-benzoyladenosine (FSBA) respectively by inorganic phosphate and by 2′,3′-O-(2,4,6-trinitrophenyl)adenosine 5′-monophosphate (TNP-AMP) suggests that NBD-C1 labels an essential Tyr residue in the positively charged locus for binding the polyphosphate end of ATP, and that FSBA labels an essential Tyr residue in the more hydrophobic locus for binding the adenosine moiety of ATP at the catalytic site of F1.  相似文献   

9.
S Basu  A Basu  M J Modak 《Biochemistry》1988,27(18):6710-6716
Inactivation of Escherichia coli DNA polymerase I by pyridoxal 5'-phosphate treatment results from its reactivity at multiple lysine residues. One of these residues, lysine-758, has been shown to be located at the substrate binding site in DNA polymerase I [Basu, A., & Modak, M. J. (1987) Biochemistry 26, 1704-1709]. We now demonstrate that lysine-635 is another important target of pyridoxylation; modification of this site results in decreased rates of DNA synthesis. Addition of template-primer with or without substrate deoxynucleoside triphosphate protects lysine-635 from pyridoxylation. Analysis of the initiation versus elongation phase of DNA synthesis by lysine-635-modified enzyme revealed that elongation of the DNA chain is severely affected by the lysine-635 modification. We therefore conclude that this lysine residue plays an important role in the processive mode of DNA synthesis by E. coli DNA polymerase I.  相似文献   

10.
Amino groups in the pyridoxal phosphate, pyridoxamine phosphate, and apo forms of pig heart cytoplasmic aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC .2.6.1.1) have been reversibly modified with 2,4-pentanedione. The rate of modification has been measured spectrophotometrically by observing the formation of the enamine produced and this rate has been compared with the rate of loss of catalytic activity for all three forms of the enzyme. Of the 21 amino groups per 46 500 molecular weight, approx. 16 can be modified in the pyridoxal phosphate form with less than a 50% change in the catalytic activity of the enzyme. A slow inactivation occurs which is probably due to reaction of 2,4-pentanedione with the enzyme-bound pyridoxal phosphate. The pyridoxamine phosphate enzyme is completely inactivated by reaction with 2,4-pentanedione. The inactivation of the pyridoxamine phosphate enzyme is not inhibited by substrate analogs. A single lysine residue in the apoenzyme reacts approx. 100 times faster with 2,4-pentanedione than do other amino groups. This lysine is believed to be lysine-258, which forms a Schiff base with pyridoxal phosphate in the holoenzyme.  相似文献   

11.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

12.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   

13.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C-labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C]ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891–2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

14.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

15.
The interaction of rat liver acetyl-CoA car☐ylase with a 2′,3′-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3 accelerated the process. Ki values for oATP in the absence and presence of HCO3 were 0.35 ± 0.04 and 0.5 ± 0.06 mM , and those of the modification constant (kmod) were 0.11 and 0.26 min−1 respectively. oATP completely inhibited the [14C]ADP ⇌ ATP exchange and did not effect the [14C]acetyl-CoA ⇌ malonyl-CoA exchange. Incorporation of ∼1 equivalent of [3H]oATP per acetyl-CoA car☐ylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or β-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA car☐ylase by oATP. It was shown that the reagent apparently interacted selectively with the ɛ-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

16.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

17.
Acyl-CoA carboxylase was purified from the 140,000g supernatant of the goose uropygial gland extract by means of Sepharose 4B-CL gel filtration, ammonium sulfate precipitation, and affinity chromatography with monomeric avidin-Sepharose 4B-CL. The purified enzyme showed a pH optimum of 8 and had a specific activity ranging from 2–8 μmol/min/mg protein for acetyl-CoA. Sodium dodecyl sulfate-electrophoresis showed a single band corresponding to a molecular weight of 238,000. Carboxylase activity was stimulated threefold by 20 mm citrate. Maximal activity was observed with 25 mm bicarbonate, 10 mm Mg2+, 3 mm ATP, and 1 to 2 mm acyl-CoA. The enzyme carboxylated acetyl-CoA, propionyl-CoA, butyryl-CoA, pentanoyl-CoA, and hexanoyl-CoA, with a V of 8.8, 5.7, 0.9, 0.04, and 0.03 μmol/min/mg, respectively; Km values for the five CoA esters were quite similar. The carboxylated products from these substrates were analyzed by high-performance liquid chromatography. This carboxylase was inhibited by sodium and chloride ions. Chemical modification of the enzyme with pyridoxal-5′-phosphate showed inhibition of activity that was time and concentration dependent. The inhibition was reversed by dilution except when treated with sodium borohydride before dilution. Acetyl-CoA partially (40%) protected the enzyme from inhibition, whereas 3′-dephosphoacetyl-CoA, which showed a Km 3.5 times that of acetyl-CoA, was much less efficient in protecting the enzyme against inactivation by pyridoxal phosphate. These results suggest that the ?-amino group of a lysine residue is involved in binding acetyl-CoA via interaction with the 3′-phosphate. Chemical modification of the enzyme with phenylglyoxal showed inhibition of activity that was time and concentration dependent. However, none of the substrates protected the enzyme from inactivation; citrate partially protected the enzyme, possibly by changing the configuration of the enzyme. Amino acid analysis of the protein showed striking similarities with carboxylases purified from other animals. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the gland enzyme showed fusion of precipitation lines with the enzymes from goose liver and chicken liver. These results strongly support the conclusion that the uropygial gland, which synthesizes multimethyl-branched acids, employs the same carboxylase as that present in other tissues.  相似文献   

18.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

19.
Phosphoribosylpyrophosphate synthetase from Salmonella typhimurium contains nine lysine residues per subunit and can be inactivated by reagents specific for this amino acid. Pyridoxal-P reversibly inhibited the enzyme by about 70% by forming a Schiff base derivative with lysine. Reduction with NaBH4 made this inactivation irreversible. Kinetic experiments indicated that the failure to inactivate the enzyme completely in a single treatment with pyridoxal-P reflects a reversible equilibrium between inactive Schiff base and a noncovalent complex. Modification of one lysine residue per subunit correlated with apparently total loss of activity. The rate of inactivation of the enzyme was decreased fourfold by saturating concentrations of ATP and was decreased at least 20-fold by formation of a quaternary complex of the enzyme with Mg2+, α,β-methylene ATP, and ribose-5-P. Trinitrobenzenesulfonate also irreversibly inactivated the enzyme, but this reagent was less specific in that the loss of activity corresponded to the modification of four to five lysine residues. These results suggest that an essential lysine is near the active site of Phosphoribosylpyrophosphate synthetase.  相似文献   

20.
Reaction of a dog kidney (Na + K)-ATPase with pyridoxal phosphate, followed by borohydride reduction, reduced the catalytic activity when measured subsequently. The time course of inactivation did not follow a first-order process, and certain characteristics of the residual enzymatic activity were modified. Moreover, various catalytic activities were diminished differently: Na-ATPase activity was largely spared, K-phosphatase activity was diminished only by half that of the (Na + K)-ATPase, whereas (Na + K)-CTPase and Na-CTPase activities were diminished more. ATP, ADP, CTP, nitrophenyl phosphate, and Pi all protected against inactivation. Increasing salt concentrations increased inactivation, but KCl slowed and NaCl hastened inactivation when compared with choline chloride. Occupancy of certain substrate or cation sites seemed more crucial than selection of conformational states. For the residual (Na + K)-ATPase activity theK 0.5 for K+ was lower and theK 0.5 for Na+ higher, while the sensitivities to ouabain, oligomycin, and dimethylsulfoxide were diminished; for the residual K-phosphatase activity theK 0.5 for K+ was unchanged, the sensitivity to ouabain and oligomycin diminished, but the stimulation by dimethylsulfoxide increased. These properties cannot be wholly accommodated by assuming merely shifts toward either of the two major enzyme conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号