首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have systematically investigated the effect of short-chain n-alcohols and glycerol on the pretransition of 1,2-dipalmitoylphosphatidylcholine (DPPC) by spectrophotometry. It is found that the n-alcohols and glycerol remove the pretransition above a critical concentration for each ligand. In addition, the short-chain n-alcohols below the critical concentration decrease the pretransition temperature. The longer the aliphatic chain length of the n-alcohol (up to butanol) the greater the decrease in the pretransition temperature, and the lower the concentration necessary to remove the pretransition. However, glycerol differs from the short-chain n-alcohols in that it has no significant effect on either the pretransition or the main transition, but it is also capable of removing the pretransition above a critical concentration. It has previously been shown that alcohols have a biphasic effect on the main transition temperature of phosphatidylcholines (Rowe, E.S. (1983) Biochemistry 22, 3299-3305). At high alcohol concentrations, the main transition is not thermodynamically reversible (Rowe, E.S. (1985) Biochim. Biophys. Acta 813, 321-330). Recently, Simon and McIntosh (Biochim. Biophys. Acta (1984) 773, 169-172) have identified that at high ethanol concentration DPPC exists in the interdigitated phase. The critical ligand concentration at which the pretransition disappears coincides with the induction of main transition hysteresis and the biphasic alcohol effect in the main transition. These three effects appear to correlate with the induction of the interdigitated gel state by alcohols and glycerol.  相似文献   

2.
We have systematically investigated the effect of short-chain n-alcohols and glycerol on the pretransition of 1,2-dipalmitoylphosphatidylcholine (DPPC) by spectrophotometry. It is found that the n-alcohols and glycerol remove the pretransition above a critical concentration for each ligand. In addition, the short-chain n-alcohols below the critical concentration decrease the pretransition temperature. The longer the aliphatic chain length of the n-alcohol (up to butanol) (a) the greater the decrease in the pretransition temperature, and (b) the lower the concentration necessary to remove the pretransition. However, glycerol differs from the short-chain n-alcohols in that it has no significant effect on either the pretransition or the main transition, but it is also capable of removing the pretransition above a critical concentration. It has previously been shown that alcohols have a biphasic effect on the main transition temperature of phosphatidylcholines (Rowe, E.S. (1983) Biochemistry 22, 3299–3305). At high alcohol concentrations, the main transition is not thermodynamically reversible (Rowe, E.S. (1985) Biochim. Biophys. Acta 813, 321–330). Recently, Simon and McIntosh (Biochim. Biophys. Acta (1984) 773, 169–172) have identified that at high ethanol concentration DPPC exists in the interdigitated phase. The critical ligand concentration at which the pretransition disappears coincides with the induction of main transition hysteresis and the biphasic alcohol effect in the main transition. These three effects appear to correlate with the induction of the interdigitated gel state by alcohols and glycerol.  相似文献   

3.
By encapsulating a pH-sensitive dye, phenol red, in multilamellar liposomes of DMPC, DPPC and DMPC/DPPC mixtures, the permeability of these phospholipid bilayers to dye as a function of temperature has been studied. For both DMPC and DPPC liposomes, dye release begins well below the main gel-to-liquid-crystalline phase transition (24°C and 42°C, respectively) at temperatures corresponding to the onset of the pretransition (about 14°C and 36°C, respectively) with DPPC liposomes exhibiting a permeability anomaly at the main phase transition (42°C). The perturbation occurring in the bilayer structure that allows the release of encapsulated phenol red (approx. 5 Å diameter) is not sufficient to permit the release of encapsulated haemoglobin (approx. 20 Å diameter, negatively charged). In liposomes composed of a range of DMPC/DPPC mixtures, dye release commences at the onset of the pretransition range (determined by optical absorbance measurements) and increases with increasing temperature until the first appearance of liquid crystalline phase after which no further dye release occurs. Interestingly, the dye retaining properties of DMPC and DPPC liposomes well below their respective pretransition temperature regions are very different: DMPC liposomes release much encapsulated dye at incubation temperatures of 5°C whilst DPPC liposomes do not.  相似文献   

4.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

5.
The effect of 2,4-dichlorophenol (DCP) was studied on the fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)--water liposomes. The structure and the thermotropic phase behaviour of the liposomes was examined in the presence of DCP (DCP/DPPC molar ratio, varied from 2x10(-2) up to 1) using small- and wide-angle X-ray scattering (SAXS, WAXS) and freeze-fracture electron microscopy. The structural behaviour of the DPPC/DCP/water system was strongly dependent on the concentration of the DCP. In the pretransition range the DCP molecules (at 2x10(-2) DCP/DPPC molar ratio) induced the interdigitated phase beside the parent (gel and rippled gel) phases, locally which can be form at higher DCP concentration. When the DCP/DPPC molar ratio was increased the pretransition disappeared and the main transition was shifted to lower temperatures. In the molar ratio range from 2x10(-1) up to 5x10(-1), a coexistence of different phases was observed in the wide temperature range from 20 up to 40 degrees C. With a further increase of the DCP/DPPC molar ratio (6x10(-1) to 1) only the interdigitated gel phase occurred below 25 degrees C. A schematic phase diagram of DPPC/DCP/water system was constructed to summarise the results.  相似文献   

6.
Mixtures of sn-1 (D) and sn-3 (L) enantiomers of fully hydrated dipalmitoylphosphatidylcholine (DPPC) were studied with differential scanning calorimetry and freeze-fracture microscopy. The pretransition temperature of racemic mixtures of DPPC was 1.8 C degrees below that of either pure sn-1 or sn-3 enantiomers, which had similar pretransition temperatures. The main transition temperature of racemic mixtures was also depressed, but to a lesser extent, 0.8 C degrees. Freeze-fracture images of liposomes of sn-1, sn-3, and racemic mixtures of DPPC frozen from the P beta' phase showed well-defined ripples of wavelength 13 nm. Lipid stereoconfiguration had no effect on ripple wavelength, configuration or amplitude, or on the number and nature of surface defects.  相似文献   

7.
The effect of three anions, Cl-, Br- and I-, on the phase transitions of dipalxnitoylphosphatidyicholine (DPPC) was measured. Main phase transition was modestly affected by these anions in the salt concentration range 0.2 M. For Cl- and Br- the temperature of main phase transition was lower (by about 0.5 degrees C), its half-width modestly larger and enthalpy practically unchanged, all three parameters were altered to a much larger deuce. Main phase transition temperature was 1.5 degrees C lower and the peak hall-width significantly smaller. These changes were not accompanied by any alteration in main phase transition enthalpy. Iodide shifted the pretransition temperature toward lower values and increased its half-width to such an extent that at concentrations above 100 mM it was practically undetectable. Besides cations, the presence of anions also has a distinct effect on lipid bilayer interface properties.  相似文献   

8.
The interaction of phenol (PHE), salicylic acid (SA) and o-acetylsalicylic acid (ASA) with bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was investigated by infrared spectrometry. The temperature of the main gel to liquid crystal phase transition of DPPC is markedly depressed in the presence of the three guest molecules. The temperature depression depends on the nature and concentration of the additives. The temperature of the pretransition is also affected by these guest molecules and the depression in temperature is even more pronounced than that of the main transition temperature. Possible modes of interaction of these guest molecules with the lipid bilayers are discussed.  相似文献   

9.
Fourier transform infrared spectroscopy was used to study the metastability of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) at temperatures near 0 degrees C. It was found that when DPPC is incubated at 2 degrees C for three days the two-dimensional acyl chain packing changes from one resulting in spectra typical of an orthorhombic subcell to one resembling that found in triclinically packed acyl systems. This transition proceeds in two stages. The first step, requiring less than one day, approximates first-order kinetics; the second stage proceeds with second- or higher-order kinetics. Comparison of spectra recorded at -36 degrees C with and without prior incubation at 2 degrees C shows that there are two stable low temperature forms of DPPC; that is, DPPC is metastable only within a narrow temperature range. A study of the thermotropic behavior in the range 0-45 degrees C shows that the subtransition near 15 degrees C is a transition from the alternate form to one with orthorhombic characteristics. Spectral changes at the pretransition and the main phase transition demonstrate that there are differences in behavior that are related to the thermal history of the sample.  相似文献   

10.
The effect of various concentrations of calcium ion (Ca2+) on dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC) and mixed DPPC/DSPC (1:1) liposomes was studied by differential scanning calorimetry. Ca2+ concentrations of 10 mM and above split the main transition peak of DPPC into two distinguishable components, and, at 30 mM and above, also resulted in the disappearance of a pre-transition peak. The effect of Ca2+ on DSPC liposomes was even more dramatic in that it induced a more definitive split in the main transition peak and caused the loss of the pretransition peak at only 10 mM concentration. The thermograms of the DPPC/DSPC mixed liposomes were unaltered in the presence of Ca2+, even at a concentration of 50 mM. Whether or not Ca2+ is able to alter thermograms of phosphatidylcholine liposomes appears to be dependent on the degree of molecular order of the bilayer prior to interaction with Ca2+.  相似文献   

11.
We report an extension of the recently published PMDSC method that permitted synchronous determination of heat capacity and expansibility when using slow, defined pressure formats in a DSC scan. Here we applied continuously opposing pressure changes that are fast compared to the time constants of the DSC instrument to study relaxation kinetics of phospholipids. Investigations of multilamellar vesicles of DPPC or DSPC in water revealed for both lipids relaxation times of about 30 s at the maximum of the main transition peak and about 15 s at the maximum of the pretransition. The relaxation times in the transition range are proportional to heat capacity of main- and pretransition. The molecular origin of the relaxation processes appears to stem from pressure-induced water fluxes between the interbilayer region and the bulk water phase.  相似文献   

12.
Interaction of lanthanum ions (La3+) with 1,2 dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) causes an increase in Tc, the temperature of maximal excess heat capacity, and the width of the gel-to-liquid crystalline transition. At a mole ratio of La3+ to DPPC sufficient to remove the hydrocarbon chain tilt angle of DPPC, the changes in the thermodynamic parameters of the pretransition are minor, Tc and the width were unaltered and the enthalpy was reduced by only 10%. This suggests that the change in tilt angle is not a necessary concomitant of the pretransition.  相似文献   

13.
The effect of incorporation of 1-palmitoyl-sn-glycero-3-phosphocholine (PLPC) on the structure of the Pβ ripple mesophase in aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) has been studied by differential scanning calorimetry (DSC) and scanning dilatometry (SD). For samples containing 34 wt. % 2H2O and 0–15 wt. % PLPC, a pretransition was observed by DSC. The pretransition disappears at 15 wt. % PLPC. The behavior of thermodynamic functions at the pretransition and main transition gives new insights on the structural changes produced by PLPC on bilayers of DPPC.  相似文献   

14.
Perfluorinated acids are emerging as an important class of persistent environmental pollutant, thus raising human health concerns. To understand the behavior of these compounds in biological systems, the mixing behavior of two perfluorinated acids, perfluorododecanoic and perfluorotetradecanoic acid, with dipalmitoylphosphatidylcholine (DPPC) was studied in monolayers at the air-water interface and in fully hydrated DPPC bilayers. The mixing behavior of both acids was indicative of an attractive interaction and partial miscibility with DPPC at the air-water interface. In the bilayer studies, the fluorinated acids cause peak broadening and elimination of the pretransition of DPPC. The onset temperature of the main phase transition remains constant in the presence of the fluorinated acids suggesting immiscibilities in the gel phase. Below X(DPPC)=0.97 significant peak broadening of the main phase transition can be observed. These results suggest strong interaction between the respective acid and DPPC, and that both acids are able to partition into the lipid bilayer. However, their mixing behavior is far from ideal, thus suggesting the presence of domains or lipid aggregates with high acid concentrations which may (adversely) impact the function of biological mono- and bilayers.  相似文献   

15.
Perfluorinated acids are emerging as an important class of persistent environmental pollutant, thus raising human health concerns. To understand the behavior of these compounds in biological systems, the mixing behavior of two perfluorinated acids, perfluorododecanoic and perfluorotetradecanoic acid, with dipalmitoylphosphatidylcholine (DPPC) was studied in monolayers at the air-water interface and in fully hydrated DPPC bilayers. The mixing behavior of both acids was indicative of an attractive interaction and partial miscibility with DPPC at the air-water interface. In the bilayer studies, the fluorinated acids cause peak broadening and elimination of the pretransition of DPPC. The onset temperature of the main phase transition remains constant in the presence of the fluorinated acids suggesting immiscibilities in the gel phase. Below X(DPPC) = 0.97 significant peak broadening of the main phase transition can be observed. These results suggest strong interaction between the respective acid and DPPC, and that both acids are able to partition into the lipid bilayer. However, their mixing behavior is far from ideal, thus suggesting the presence of domains or lipid aggregates with high acid concentrations which may (adversely) impact the function of biological mono- and bilayers.  相似文献   

16.
Properties of large unilamellar vesicles (LUV), composed of phosphatidylcholine and prepared by reverse-phase evaporation and subsequent extrusion through Unipore polycarbonate membranes, have been investigated and compared with those of small unilamellar vesicles (SUV) and of multilamellar vesicles (MLV). The unilamellar nature of the LUV is shown by 1H-NMR using Pr3+ as a shift reagent. The gel to liquid-crystalline phase transition of LUV composed of dipalmitoylphosphatidylcholine (DPPC) monitored by differential scanning calorimetry, fluorescence polarization of diphenylhexatriene and 90 degrees light scattering, occurs at a slight lower temperature (40.8 degrees C) than that of MLV (42 degrees C) and is broadened by about 50%. The phase transition of SUV is shifted to considerably lower temperatures (mid-point, 38 degrees C) and extends over a wide temperature range. In LUV a well-defined pretransition is not observed. The permeability of LUV (DPPC) monitored by leakage of carboxyfluorescein, increases sharply at the phase transition temperature, and the extent of release is greater than that from MLV. Leakage from SUV occurs in a wide temperature range. Freeze-fracture electron microscopy of LUV (DPPC) reveals vesicles of 0.1-0.2 micron diameter with mostly smooth fracture faces. At temperatures below the phase transition, the larger vesicles in the population have angled faces, as do extruded MLV. A banded pattern, seen in MLV at temperatures between the pretransition and the main transition, is not observed in the smaller LUV, although the larger vesicles reveal a dimpled appearance.  相似文献   

17.
Effects of ethanol on dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) dispersions were investigated with an automated scanning density meter and a differential scanning calorimeter (DSC). The temperature-dependent profile of specific volume measured by the density meter clearly exhibited phase transitions of the DPPC and the DSPC dispersions as drastic changes in the thermal expansion coefficients. On increasing the ethanol concentration in the DPPC dispersions, the pretransition temperature was reduced faster than the main transition temperature was. An interdigitated gel phase (L beta I) appeared as a region of lower specific volume at the pretransition temperature when the ethanol concentration reached 40 mg/ml. The L beta I phase spread both its ends in an ethanol-dependent fashion, and the high-temperature end merged to the main transition at 50 mg/ml of ethanol. The temperature-ethanol phase diagram has been determined for DPPC. The transitions L beta' to L beta I and from L beta I to P beta' were also observed on the thermograms of DSC measurements. In the DSPC dispersions, the L beta I phase was induced between the L beta' and the P beta' phases by a lower ethanol concentration (about 20 mg/ml).  相似文献   

18.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

19.
Mixtures of sn-1 ( ) and sn-3 ( ) enantiomers of fully hydrated dipalmitoylphosphatidylcholine (DPPC) were studied with differential scanning calorimetry and freeze-fracture microscopy. The pretransition temperature of racemic mixtures of DPPC was 1.8 C° below that of either pure sn-1 or sn-3 enantiomers, which had similar pretransition temperatures. The main transition temperature of racemic mixtures was also depressed, but to a lesser extent, 0.8 C°. Freeze-fracture images of liposomes of sn-1, sn-3, and racemic mixtures of DPPC frozen from the Pβ′ phase showed well-defined ripples of wavelength 13 nm. Lipid stereoconfiguration had no effect on ripple wavelength, configuration or amplitude, or on the number and nature of surface defects.  相似文献   

20.
We have investigated by Electron Spin Resonance spectroscopy, the effects of high electrolyte concentration on the phase transitions of unilamellar vesicles of dipalmitoylphosphatidylcholine at the pH values of 5.0 and 9.0. Using the 5-nitroxide stearic acid as spin probe we have found that, at both pH values, the lipid main phase transition is not quite affected by variations of the electrolyte concentration up to the value of 3 M. Instead, the pretransition at pH 5.0 disappears in the presence of 1 M electrolyte, and at pH 9.0, the pretransition temperature shifts upward from 25.5 to 31.0 degrees C when the electrolyte concentration reaches the value of 3 M. The observed results on the pre- and main phase transition widths, transition temperatures and their cooperativity indicate that the presence of salt in the bulk solution leads to structural changes of the lipid bilayer which essentially concern either the polar zone or the hydrogen belt region of the DPPC vesicles. The extent of observed perturbation depends on salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号