首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
《Free radical research》2013,47(1):489-497
The effect of H2O2 on the primary structure of OxyHb was studied. Upon treatment of Oxy Hb with H2O2 ([Heme]/[H2O2] =I), tryptophan and methionine residues of the /-chain were modified. Treatment of ApoHb with H2O2 resulted in the modification of histidine and methionine residues in both globin chains. Tryptophan residues were unaffected. Modification of methionine residues in both the β-chain of OxyHb and ApoHb probably results from the direct oxidation of mcthionine by H2O2. The modification of histidine residues in ApoHb may be mediated by a metal-catalyzed oxidation system comprised of H2O2 and histidine-bound iron. The H2O2-mediated modification of tryptophan in the OxyHb β-chain. however, requires the heme moiety.  相似文献   

3.
To better understand lung oxidant stress responses, we examined A549 lung cells exposed to H2O2 using “stable isotope labeling by amino acids.” We identified 466 cytosolic and 387 nuclear proteins; H2O2 exposure produced ≥twofold differences in 31, all were downregulations. None were previously reported as oxidant stress response proteins, although they share common functions. One of the responders, treacle, was linked to p53, an important oxidative stress response. The Treacher Collins–Franceschetti syndrome can result from treacle mutation and insufficiency was suggested to cause increased p53 leading to the syndrome. However, results here indicate p53 and treacle responses to H2O2 are independent: treacle remains suppressed after p53 recovery; the threshold for treacle reduction is well above that for p53 induction; and treacle suppression by short interfering RNA does not modify the p53 response. Evidence of treacle antioxidant activity include reduction being driven by proteasome degradation independently of mRNA, typical for oxidant‐absorbing proteins, and increased sensitivity to H2O2 consequent to short interfering RNA suppression. Data here show a link between oxidative stress and treacle reduction, demonstrate that treacle does not control p53, provide evidence of a treacle oxidant defense role, support the hypothesis that oxidant stress plays a role in the Treacher Collins–Franceschetti syndrome, and raise the possibility that treacle plays an anti‐oxidant role in lungs.  相似文献   

4.
Polynitroxylated hemoglobin (Hb(AcTPO)12) has been developed as a hemoglobin-based oxygen carrier. While Hb(AcTPO)12 has been shown to exert beneficial effects in a number of models of oxidative injury, its peroxidase activity has not been characterized thus far. In the blood stream, Hb(AcTPO)12 undergoes reduction by ascorbate to its hydroxylamine form Hb(AcTPOH)12. Here we report that Hb(AcTPOH)12 exhibits peroxidase activity where H2O2 is utilized for intramolecular oxidation of its TPOH residues to TPO. This represents an unusual redox-catalytic mechanism whereby reduction of H2O2 is achieved at the expense of reducing equivalents of ascorbate converted into those of Hb(AcTPOH)12, a new propensity that cannot be directly associated with ascorbate.  相似文献   

5.
Abstract

A novel hydrogen peroxide (H2O2) biosensor was successfully constructed, based on the immobilization of hemoglobin (Hb) on polypyrrole (PPy)-Fe3O4 and dodecyltrimethylammonium bromide (DTAB) composite ?lm-modified carbon paste electrodes (CPE). The PPy-Fe3O4 composites were synthesized in the suspension solution of Fe3O4 nanoparticles via in situ chemical oxidative polymerization under the direction of cationic surfactant cetyl trimethyl ammonium bromide. Spectroscopic and electrochemical examinations illustrated that the PPy-Fe3O4/DTAB composites were a biocompatible matrix for immobilizing Hb, which revealed high chemical stability and excellent biocompatibility. The thermodynamic, dynamic, and catalytic performance of the biosensor were analysed using cyclic voltammetry (CV). The results indicated that the PPy-Fe3O4/Hb/DTAB/CPE exhibited excellent electrocatalytic activity in the reduction of H2O2 with a high sensitivity (104 μA mM? 1). The catalytic reduction currents of H2O2 were linearly related to H2O2 concentration in the range from 2.5 μM to 60 μM with a detection limit of 0.8 μM (S/N = 3). With such superior characteristics, this biosensor for H2O2 can be potentially applied in determination of other reactive oxygen species as well. These results indicated that PPy-Fe3O4/DTAB composites are a promising matrix for bioactive molecule immobilization.  相似文献   

6.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, β-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2??). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc?). The O2?? generation and Asc? formation were detected by O2??-specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2?? production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2?? and Asc?. Addition of GSH completely inhibited the PEA-dependent production of O2?? and Asc? in Hb solution. We propose that the O2?? generation and Asc? formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

7.
Li D  Chen XQ  Li WJ  Yang YH  Wang JZ  Yu AC 《Neurochemical research》2007,32(8):1375-1380
Cytoglobin (Cygb) is a recently discovered intracellular respiratory globin, which exists in all types of cells. It has been suggested that Cygb has a role in protecting cells against oxidative stress. In the present study we have tested this hypothesis. The N2a neuroblastoma cells were exposed to various kinds of insults, including hydrogen peroxide (H2O2), hypoxia, kainic acid, high extracellular CaCl2, high osmolarity, UV irradiation and heat shock. Among them, only H2O2-treatment induced a significant up-regulation of cytoglobin mRNA level. We stably transfected N2a cells with Cygb-siRNA vectors and successfully knocked down Cygb. The Cygb-siRNA could exacerbate cell death upon H2O2-treatment, as demonstrated by MTT cell viability assay. Thus, Cygb in neuronal cells might be specifically induced under oxidative stress to protect them from death.  相似文献   

8.
Sulfhydryl groups are important to avoid oxidative damage to the cell. In RBC, tert-butyl hydroperoxide (tert-BOOH) and hydrogen peroxide (H2O2) are capable of oxidizing heme and promoting lipid peroxidation. H2O2 caused greater oxidation of heme than tert-BOOH, although the oxidation of sulfhydryl groups was similar. Geochelone carbonaria Hb, a rich sulfhydryl protein, inhibited the TBA-reactive substances formation of human erythrocytes exposed to tert-BOOH by about 30%; this decrease was smaller with Geochelone denticulata Hb. Sulfhydryl reagents diminished the number of reactive sulfhydryl groups in the G. carbonaria Hb resulting in a decrease of its antioxidant power, suggesting the involvement of sulfhydryls of Hb in the protection against lipid peroxidation.  相似文献   

9.
Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2''-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan.  相似文献   

10.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

11.
The absolute values of the O2-affinities (P50, Klow, and Khigh) of hemoglobin (Hb) are regulated neither by changes in the static T-/R-quaternary and associated tertiary structures nor the ligation states. They are pre-determined and regulated by the extrinsic environmental factors such as pH, buffers, and heterotropic effectors. The effect and role of O2 on Hb are reversibly to drive the structural allosteric equilibrium between the T(deoxy)- and R(oxy)-Hb toward R(oxy)-Hb (the structural allostery). R(oxy)-Hb has a higher O2-affinity (Khigh) relative to that (Klow) of the T(deoxy)-Hb (Khigh > Klow) under any fixed environmental conditions. The apparent O2-affinity of Hb is high, as the globin matrix interferes with the dissociation process of O2, forcing the dissociated O2 geminately to re-bind to the heme Fe. This artificially increases [oxy-Hb] and concomitantly decreases [deoxy-Hb], leading to the apparent increases of the O2-affinity of Hb. The effector-linked high-frequency thermal fluctuations of the globin matrix act as a gating mechanism to modulate such physical, energetic, and kinetic barriers to enhance the dissociation process of O2, resulted in increases in [deoxy-Hb] and concomitant decrease in [oxy-Hb], leading to apparent reductions of the O2-affinity of Hb (the entropic allostery). The heme in Hb is simply a low-affinity O2-trap, the coordination structure of which is not altered by static T-/R-quaternary and associated tertiary structural changes of Hb. Thus, heterotrophic effectors are the signal molecule, which acts as a functional link between these two allosteries and generates the diverse functionality of Hb of physiological relevance. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

12.
Carbon monoxide (CO), an endogenous signaling molecule in animals, also provides potent cytoprotective effects including attenuation of lung lipid peroxidation induced by oxidant in the mouse. Our recent work demonstrated that 0.01 μmol/L hematin (a CO donor) treatment of wheat plants alleviated salt-induced oxidative damage in seedling leaves. In this report, we further discovered that hematin pretreatment (≤ 0.1 μmol/L) could delay wheat leaf chlorophyll loss mediated by further treatment of H202 and paraquat, two reactive oxygen species (ROS) sources, in dose-and even time-dependent manners. Also, compared with the control samples, seedling leaves pretreated with 0.01 or 0.1 μmol/L hematin for 24 h exhibited lower levels of H2O2 and lipid peroxidation, as well as higher contents of chlorophyll and activities of antioxidant enzymes. Such beneficial effects exerted by hematin were mimicked by the pretreatment of antioxidant butylated hydroxytoluene (BHT), and differentially reversed when CO scavenger hemoglobin (Hb), or CO specific synthetic inhibitor ZnPPIX was added, respectively. Taken together, the results presented In this paper directly illustrate for the first time that CO is able to strongly protect plants from oxidative damage caused by the overproduction of ROS, and strengthens the evidence that CO is a potent antioxidant in various abiotic and biotic stresses, as similar results have been shown in animal tissues.  相似文献   

13.
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS2 mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein.  相似文献   

14.
In the course of nitric oxide (NO) scavenging, hemoglobin (Hb) turnover is linked to antioxidant metabolism and affects the cellular redox level. The influence of Hb presence on the ascorbate-glutathione cycle enzymes and the levels of H2O2 and ascorbate was investigated in alfalfa root cultures transformed to over-express (Hb+) or down-regulate (Hb–) class-1 Hb. Hb+ lines had substantially increased ascorbate levels as well as elevated monodehydroascorbate reductase and ascorbate peroxidase activities. Hb– lines showed significant increases in dehydroascorbate reductase and glutathione reductase activities. The observed changes in ascorbate and ascorbate-glutathione cycle enzymes were pronounced both at high (40 kPa) and low (3 kPa) O2 pressures. Hb– lines had significantly reduced levels of the NO- and H2O2-sensitive enzyme, aconitase, as compared to Hb+ lines. This reduced activity was likely due the higher levels of NO in Hb– lines, as treatment of plant extracts with the NO-donor DEANO also affected aconitase activity. The H2O2 levels were not significantly different amongst the lines and showed no variation with change in oxygen partial pressure. In conclusion, the expression of class-1 Hb improves the antioxidant status through increased ascorbate levels and increased activity of enzymes involved in H2O2 removal.  相似文献   

15.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   

16.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

17.
《Free radical research》2013,47(8):990-1003
Abstract

Erythrocytes are continuously exposed to risk of oxidative injury due to oxidant oxygen species. To prevent damage, they have antioxidant agents namely, catalase (Cat), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2). Our aim was to contribute to a better understanding of the interplay between Prx2, Cat, and GPx under H2O2-induced oxidative stress, by studying their changes in the red blood cell cytosol and membrane, in different conditions. These three enzymes were quantified by immunoblotting. Malondialdehyde, that is, lipoperoxidation (LPO) in the erythrocyte membrane, and membrane-bound hemoglobin (MBH) were evaluated, as markers of oxidative stress. We also studied the erythrocyte membrane protein profile, to estimate how oxidative stress affects the membrane protein structure. We showed that under increasing H2O2 concentrations, inhibition of the three enzymes with or without metHb formation lead to the binding of Prx2 and GPx (but not Cat) to the erythrocyte membrane. Prx2 was detected mainly in its oxidized form and the linkage of metHb to the membrane seems to compete with the binding of Prx2. Catalase played a major role in protecting erythrocytes from high exogenous flux of H2O2, since whenever Cat was active there were no significant changes in any of the studied parameters. When only Cat was inhibited, Prx2 and GPx were unable to prevent H2O2-induced oxidative stress resulting in increasing MBH and membrane LPO. Additionally, the inhibition of one or more of these enzymes induced changes in the anchor/linker proteins of the junctional complexes of the membrane cytoskeleton–lipid bilayer, which might lead to membrane destabilization.  相似文献   

18.
Nobiletin (3′,4′,5,6,7,8‐hexamethoxyflavone), a dietary polymethoxylated flavonoid found in Citrus fruits, has been reported to have antioxidant effect. However, the effect of nobiletin on human retinal pigment epithelium (RPE) cells induced by hydrogen peroxide (H2O2) is still unclear. Therefore, we investigated the protective effect of nobiletin against H2O2‐induced cell death in RPE cells. Our results demonstrated that nobiletin significantly increased cell viability from oxidative stress. Nobiletin inhibited H2O2‐induced ROS production and caspase‐3/7 activity in ARPE‐19 cells. Furthermore, nobiletin significantly increased Akt phosphorylation in ARPE‐19 cells exposed to H2O2. Meanwhile, LY294002, an inhibitor of PI3K/Akt, abolished the protective effect of nobiletin against H2O2‐induced decreased cell viability and increased caspase‐3/7 activity in ARPE‐19 cells. In summary, these data show that nobiletin protects RPE cells against oxidative stress through activation of the Akt‐signaling pathway. Thus, nobiletin should be an oxidant that attenuates the development of age‐related macular degeneration.  相似文献   

19.
Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 h in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 h, but not at 6 h. This low-level oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 h and IRS-2 at 4 and 6 h. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 h, but not at 6 h. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism.  相似文献   

20.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号