共查询到18条相似文献,搜索用时 15 毫秒
1.
The interaction of |C nH 2n+1N +(CH 3) 3| · I? ( n = 3, 6, 9, 12, 14, 16 or 18) with egg-yolk phosphatidylcholine-water dispersions has been studied by 31P-NMR spectroscopy. It is shown that the effective anisotropy of 31P chemical shift (? Δσeff) of the lamellar phospholipid liquid-crystalline phase L α increases with increasing concentration and alkyl chain length of the drug. Addition of or |C 9H 19N +(CH 3) 3|· I? to the phospholipid-water dispersion at a molar ratio ammonium salt:phospholipid > 0.8 induces in the dispersion a structure with an effective isotropic phospholipid motion. This structure is unstable and slowly transforms into the hexagonal phase. These effects have not been observed in phospholipid-water dispersions mixed with the ammonium derivatives with the longer alkyl chains n 12, 14, 16 or 18. It is proposed that these results might explain the effects of the investigated drugs on the nerve, muscle and bacterial cells. 相似文献
2.
1. The effect of insulin on the perfused rat heart during normoxia and total ischaemia was studied by 31P-NMR. 2. During normoxic perfusion, insulin increased the phosphocreatine to ATP ratio at the expense of P i, when glucose was the substrate. No change was observed when acetate was used as the sole substrate. The intracellular pH (as measured from the position of the 2-deoxyglucose 6-phosphate resonance peak) was unaffected by insulin treatment. 3. Infusion of insulin prior to ischaemia caused an increase in the rate and extent of acidosis during the period of no flow while the rate of ATP depletion was decreased. 4. Freezeclamped studies showed an increase in glycogen levels upon insulin treatment of the glucose perfused rat heart. During ischaemia, a decrease in glycogen content concomitant with an increase in lactate was observed. The accessibility of glycogen to phosphorylase during ischaemia is increased as a result of insulin treatment. The control of glycolysis during ischaemia is discussed with respect to the content and structure of glycogen in heart tissue. 相似文献
3.
We investigated how differences in circadian rhythm type affect the health of workers engaged in shift work. Employees, who were newly hired in a steel company between 2007 and 2011, received the Morningness–Eveningness Questionnaire (MEQ) survey. The target participants were 153 male shift workers who were not being treated with any antihyperlipidemic drugs and underwent periodic physical examinations including blood tests at least twice. According to the score of the MEQ at the time of joining the company, we classified the subjects into five types. Longitudinal changes in serum lipid level were estimated among the circadian rhythm types adjusted for age, BMI, and other covariates using a linear mixed model. The regression coefficient of total cholesterol level in the “definitely and moderately morning” group was ?17.83 (95% confidence interval (CI): ?33.42 to ?2.23), and in the “intermediate ‘group’ was ?16.84 [95% CI: ?30.40 to ?3.28], compared to the moderate evening type.” The total cholesterol level was higher in the moderately evening type than in any of the other groups. Between the Morningness–Eveningness (ME) type and Low-density lipoprotein (LDL) cholesterol levels, compared with the “moderately evening type” group, the regression coefficient in the “intermediate type” group was ?16.08 (95% CI: ?28.79 to ?3.37), and in the “definitely and moderately morning type” group was ?17.50 [95% CI: ?32.11 to ?2.88]. The “moderately evening type” group had a higher LDL cholesterol level than any of the other groups. Evening-type circadian rhythm type shift workers are more prone to elevated serum lipid levels. 相似文献
4.
The polyunsaturated fatty acid docosahexaenoic acid (DHA, 22 : 6, n-3) is found at a level of about 50% in the phospholipids of neuronal tissue membranes and appears to be crucial to human health. Dipalmitoyl phosphatidylcholine (DPPC, 16 : 0/16 : 0 PC) and the DHA containing 1-stearoyl-2-docosahexenoyl phosphatidylserine (SDPS) were used to make DPPC (60%)/SDPS (40%) bilayers with and without 10 mol% chlorpromazine (CPZ), a cationic, amphiphilic phenothiazine. Resonances that are present in 13C NMR spectrum of the DPPC (60%)/SDPS (40%) sample and that disappear in presence of 10% CPZ most probably are due to the special interface environment, e.g. the hydrophobic mismatch, at the interface of DPPC and SDPS microdomains in the DPPC/SDPS bilayer. In itself the appearance of resonances at novel chemical shift values is a clear demonstration of a unique chemical environment in the DPPC (60%)/SDPS (40%) bilayer. The findings of the study presented here suggest CPZ bound to the phosphate of SDPS will slow down and partially inhibit such a DHA acyl chain movement in the DPPC/SDPS bilayer. This would affect the area occupied by a SDPS molecule (in the bilayer) and probably the thickness of the bilayer where SDPS molecules reside as well. It is quite likely that such CPZ caused changes can affect the function of proteins embedded in the bilayer. 相似文献
5.
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep. 相似文献
6.
Calcium deficiency in zucchini ( Cucurbita pepo L.) is associated with reduced growth and a reduced ability to transport auxin (Allan and Rubery, 1991, Planta 183, 604–612). An investigation of the effects of calcium-deficiency on zucchini hypocotyl cells was made using weak-acid uptake
and 31P-nuclear-magneticresonance ( 31P-NMR) spectroscopy in vivo and in tissue extracts. Calcium-deficient tissue had the same cytoplasmic and vacuolar pHs as
normal tissue when extracellular pH was near neutral. At acidic external pH the vacuolar pH was lower in deficient tissue.
Adenine nucleotides were present predominantly as ATP in both control and calcium-deficient tissues. Addition of calcium to
calcium-deficient tissue, under conditions which cause recovery of auxin transport induced no changes in the 31P-NMR spectra of deficient tissue. The content of mobile, phosphorylated metabolites was reduced in calcium-deficient tissue
in comparison to control tissue. However, a substantial increase in the content of phosphorylcholine occurs in calcium-deficient
tissues compared with controls; this may reflect changes in lipid turnover in calcium-stressed cells.
We wish to thank Drs. Terry Moore and Jamie Vandenberg for technical assistance and Professor Peter Morris for providing the
gated oxygen device. A.C.A. thanks the Cambridge Commonwealth Trust for a Prince of Wales Scholarship and the O.R.S. Awards
Scheme for an award. 相似文献
7.
The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis- pestis type, and the pestis- microtus types I, II, and III. OmpF of the most recent pestis- pestis type has an alanine residue at the position 148, where all the pestis- microtus types have threonine there (T148A polymorphism). The variability of different pestis- microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis- microtus type II and type III have isoleucine-glycine (IG +193) or isoleucine-glycine-isoleucine-glycine (IGIG +193) insertions, respectively (IG +193 and IGIG +193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG +193 and IGIG +193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations. 相似文献
8.
Model membranes with unsaturated lipid chains containing various amounts of M13 coat protein in the -helical form were studied using time-resolved fluorescence and ESR spectroscopy. The lipid-to-protein (L/P) ratios used were > 12 to avoid protein-protein contacts and irreversible aggregation leading to -polymeric coat protein. In the ESR spectra of the 12-SASL probe in dioleoyl phosphatidylcholine (DOPC) bilayers no second protein induced component is observed upon incorporation of M13 coat protein. However, strong effects are detected on the ESR lineshapes upon changing the protein concentration. The ESR lineshapes are simulated by assuming a fixed ratio between the parallel (D ) and perpendicular (D) diffusion coefficients of 4, and an order parameter equal to zero. It is found that increasing the protein concentration from L/P to L/P 15 results in a decrease of the rotational diffusion coefficient D from 3.4 × 10 7 to 1.9 × 10 7 s –1. In the time-resolved fluorescence experiments with DPH-propionic acid as a probe, it is observed that increasing the M13 coat protein concentration causes an increase of the two fluorescent lifetimes, indicating an increase in bilayer order. Analysis of the time-resolved fluorescence anisotropy decay allows one to quantitatively determine the order parameters P 2 and P 4, and the rotational diffusion coefficient D of the fluorescent probe. The order parameters P 2 and P 4 increase from 0.34 to 0.55 and from 0.59 to 0.77, respectively, upon adding M13 coat protein to DOPC bilayers with an L/P ratio of 35. The rotational diffusion coefficient D of the DPH-propionic acid probe decreases on incorporating M13 coat protein, in accordance with the ESR results. It is concluded that M13 coat protein in the -monomeric state is not able to produce a long living lipid boundary shell and consequently an immobilization of the lipids. An overall effect on the lipids is induced, resulting in a reduction in the dynamics and an increase in average lipid order. The hydrophobic region of M13 coat protein is proposed to perfectly match the lipid bilayer, resulting in a relatively small distortion of the bilayer structure of the lipid system. 相似文献
9.
The effect of incorporation of 3-43 mol% sterol on the lipid order and bilayer rigidity has been investigated for model membranes of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. 2H NMR spectra and spin-lattice relaxation rates were measured for macroscopically aligned bilayers. The characteristics of spectra obtained at temperatures between 0-60 °C are interpreted in terms of a two-phase coexistence of the liquid disordered and the liquid ordered phases and the data is found to be in agreement with the phase diagram published by Vist and Davis (Biochemistry 29 (1990), pp. 451-464). The bending modulus of the bilayers was calculated from plots of relaxation rate vs. the square of the order parameter at 44 °C. Clear differences were obtained in the efficiency of the sterols to increase the stiffness of the bilayers. These differences are correlated to the ability of the sterols to induce the liquid ordered phase in binary as well as in ternary systems; the only exception being ergosterol, which was found to be unable to induce lo phases and also had a relatively weak effect on the bilayer stiffness in contrast to earlier reports. 相似文献
10.
CONTEXT:Tumor protein 53 (tp53) is one of the candidate gene proposed for neural tube defects, which affects central nervous system during early embryonic development, on the basis of mouse models. AIMS:The present study is an attempt to unfold the possible role of tp53 G412C polymorphism in the incidence of neural tube defect (NTDs) in humans. SETTINGS AND DESIGN:Case-control study was carried out in government hospitals of Delhi, India. MATERIALS AND METHODS:Subjects comprised of 100 mothers of NTD children and 100 matched control mothers. Information on some environmental exposures was collected along with blood samples. After DNA extraction, the genotyping of tp53 G412C polymorphism was carried out by PCR-RFLP method. Statistical Analysys:Fisher Exact or Chi square test, binary logistic model, and odds ratio (95% confidence interval) calculations were used to evaluate effect of risk factors on NTDs using SPSS v17.0. RESULTS:The ‘CC’ genotype of tp53 G412C showed protective effect towards the development of anencephaly and/or encephalocele (OR: 0.44; 95% CI: 0.19-1.00); however, no significant difference among overall NTD cases and controls was observed ( P>0.05). Further segregation of all subjects based on 2 different communities, Hindus and Muslims, the association of ‘CC’ genotype of the polymorphism with reduced NTD risk was observed among Hindu community (OR: 0.33; 95% CI: 0.13-0.79). CONCLUSION:The study highlights the selective advantage provided by maternal ‘CC’ genotype, thereby reducing risk of cephalic NTDs, probably due to the lower apoptotic activity of the protein, however, more specifically in the presence of community-specific microenvironment. 相似文献
11.
BackgroundCardiovascular diseases (CVD) are leading cause of mortality in patients with type 2 diabetes mellitus (T2DM). Increased soluble sP-selectin and 715Thr > Pro polymorphism were studied in CVD and T2DM, but association between them hasn’t been explored in Saudi Arabia. We aimed to assess sP-selectin levels in T2DM and T2DM-associated CVD patients in comparison to healthy control cohort. Also, we sought to investigate relationship between Thr715Pro polymorphism and sP-selectin levels and disease state. MethodsThis is a cross-sectional case-control study. sP-selectin level (measured by Enzyme-linked immunosorbent assay) and prevalence of Thr715Pro polymorphism (assessed by Sanger sequencing) were investigated in 136 Saudi participants. The study comprised 3 groups: group1 included 41 T2DM patients; group 2 (48 T2DM patients with CVD), and group 3 (47 healthy controls). ResultssP-selectin levels were significantly higher in diabetics and diabetics + CVD groups as compared to the corresponding control. In addition, results showed that the prevalence of 715Thr > Pro polymorphism is 11.75 % in the study population amongst the three study groups (9.55 % Thr/Pro, and 2.2 % Pro/Pro). No statistical difference was found between sP-selectin levels in subject carrying the wildtype genotype of this polymorphism and these who carry the mutant gene. There could be an association between this polymorphism and T2DM, whilst the polymorphism may protect diabetic patients from having CVD. However, odds ratio is not statistically significant in both cases. ConclusionOur study supports the previous researches’ results that Thr715Pro is neither influencing the sP-selectin level nor the risk of CVD in T2DM patients. 相似文献
12.
In this study, we have examined the membrane properties and sterol interactions of phosphatidyl alcohols varying in the size of the alcohol head group coupled to the sn-3-linked phosphate. Phosphatidyl alcohols of interest were dipalmitoyl derivatives with methanol (DPPMe), ethanol (DPPEt), propanol (DPPPr), or butanol (DPPBu) head groups. The Phosphatidyl alcohols are biologically relevant, because they can be formed in membranes by the phospholipase D reaction in the presence of alcohol. The melting behavior of pure phosphatidyl alcohols and mixtures with 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) or cholesterol was assessed using high sensitivity differential scanning calorimetry (DSC). DPPMe had the highest melting temperature (∼ 49 °C), whereas the other phosphatidyl alcohols had similar melting temperatures as DPPC (∼ 40-41 °C). All phosphatidyl alcohols, except DPPMe, also showed good miscibility with DPPC. The effects of cholesterol on the melting behavior and membrane order in multilamellar bilayer vesicles were assessed using steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DSC. The ordering effect of cholesterol in the fluid phase was lower for all phosphatidyl alcohols as compared to DPPC and decreased with increasing head group size. The formation of ordered domains containing the phosphatidyl alcohols in complex bilayer membranes was determined using fluorescence quenching of DPH or the sterol analogue cholesta-5,7,(11)-trien-3-beta-ol (CTL). The phosphatidyl alcohols did not appear to form sterol-enriched ordered domains, whereas DPPMe, DPPEt appeared to form ordered domains in the temperature window examined (10-50 °C). The partitioning of CTL into bilayer membranes containing phosphatidyl alcohols was to a small extent increased for DPPMe and DPPEt, but in general, sterol interactions were weak or unfavorable for the phosphatidyl alcohols. Our results show that the biophysical and sterol interacting properties of phosphatidyl alcohols, having identical acyl chain structures, are markedly dependent on the size of the head group. 相似文献
13.
Recent studies show that O-acylethanolamines (OAEs), structural isomers of the putative stress-fighting lipids, namely N-acylethanolamines (NAEs), can be derived from NAEs and are present in biological membranes under physiological conditions. In view of this, we have synthesized O-stearoylethanolamine (OSEA) as a representative OAE and investigated its phase behavior and crystal structure. The thermotropic phase transitions of OSEA dispersed in water and in 150 mM NaCl were characterized using calorimetric, spectroscopic, turbidimetric and X-ray diffraction studies. These studies have revealed that when dispersed in water OSEA undergoes a cooperative phase transition centered at 53.8 °C from an ordered gel phase to a micellar structure whereas in presence of 150 mM NaCl the transition temperature increases to 55.8 °C and most likely the bilayer structure is retained above the phase transition. O-Stearoylethanolamine crystallized in the orthorhombic space group P2 12 12 1 with four symmetry-related molecules in the unit cell. Single-crystal X-ray diffraction studies show that OSEA molecules adopt a linear structure with all-trans conformation in the acyl chain region. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. These studies are relevant to understanding the role of salt on the phase properties of this new class of lipids. 相似文献
14.
The effects of DCMU (3-(3′,4′-dichlorophenyl)-1,1-dimethylurea) on the fluorescence induction transient (OJIP) in higher plants were re-investigated. We found that the initial ( F0) and maximum ( FM) fluorescence levels of DCMU-treated leaves do not change relative to controls when the treatment is done in complete darkness and DCMU is allowed to diffuse slowly into the leaves either by submersion or by application via the stem. Simultaneous 820 nm transmission measurements (a measure of electron flow through Photosystem I) showed that in the DCMU-treated samples, the plastoquinone pool remained oxidized during the light pulses whereas in uninhibited leaves, the FM level coincided with a fully reduced electron transport chain. The identical FM values with and without DCMU indicate that in intact leaves, the FM value is independent of the redox state of the plastoquinone pool. We also show that (i) the generally observed F0 increase is probably due to the presence of (even very weak) light during the DCMU treatment, (ii) vacuum infiltration of leaf discs leads to a drastic decrease of the fluorescence yield, and in DCMU-treated samples, the FM decreases to the I-level of their control (leaves vacuum infiltrated with 1% ethanol), (iii) and in thylakoid membranes, the addition of DCMU lowers the FM relative to that of a control sample. 相似文献
15.
The goal of this study was to investigate the nanostructure of SC lipid model membranes comprising the most relevant SC lipids such as the unique-structured ω-acylceramide [EOS] in a near natural ratio with neutron diffraction. In models proposed recently the presence of ceramide [EOS] and FFA are necessary for the formation of one of the two existent crystalline lamellar phases of the SC lipids, the long-periodicity phase as well as for the normal barrier function of the SC. The focus of this study was placed on the influence of the FFA BA on the membrane structure and its localization within the membrane based on the ceramides [EOS] and [AP]. The internal nanostructure of such membranes was obtained by Fourier synthesis from the experimental diffraction patterns. The resulting neutron scattering length density profiles showed that the exceptionally long ceramide [EOS] is arranged in a short-periodicity phase created by ceramide [AP] by spanning through the whole bilayer and extending even further into the adjacent bilayer. Specifically deuterated BA allowed us to determine the exact position of this FFA inside this SC lipid model membrane. Furthermore, hydration experiments showed that the presented SC mimic system shows an extremely small intermembrane hydration of ∼1 Å, consequently the headgroups of the neighboring leaflets are positioned close to each other. 相似文献
16.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers. 相似文献
17.
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct. 相似文献
|